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Abstract

Background: Sudden cardiac arrest is a major cause of mortality, necessitating immediate and high-quality cardiopulmonary
resuscitation (CPR) for improved survival rates. High-quality CPR is defined by chest compressions at a rate of 100-120 per
minute and a depth of 50-60 mm. Monitoring and maintaining these parameters in real time during emergencies remain a challenge.

Objective: This study introduces a neural network model designed to predict and assess CPR quality using accelerometer data
from a smartwatch.

Methods: The study involved 83 participants performing CPR on mannequins, with accelerometer data collected via smartwatches
worn by the participants. These data were aligned with gold-standard data from the mannequins. The accelerometer-derived
compression data were segmented into 5-second intervals for training the neural network models. A total of 1226 neural network
models were developed, incorporating variations in hyperparameters and dataset configurations to optimize performance.

Results: The optimal model demonstrated the capability to accurately predict the number of compressions and the average
compression depth within a 5-second interval. The model achieved an accuracy of ±3.8 mm for compression depth and an average
deviation of 0.8 compressions. The results indicated that the neural network model could accurately assess CPR quality metrics,
surpassing other models discussed in the literature. The large and diverse dataset used in this study contributed to the robustness
and reliability of the model.

Conclusions: This study validates the efficacy of a neural network model in accurately predicting CPR metrics using smartwatch
accelerometer data. The model outperforms previous methods and shows promise for real-time feedback during CPR. Future
work involves deploying the model directly on smartwatches for real-time application, potentially improving sudden cardiac
arrest survival rates through immediate and accurate feedback on CPR quality.
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Introduction

Sudden cardiac arrest (SCA) is identified as a principal cause
of mortality in North America, particularly among young
athletes [1-4]. It can affect individuals irrespective of their
lifestyle or health status, leading to either irregular or
nonexistent heart rhythms [5,6]. As a consequence, the flow of
blood to major organs is halted, depriving them of essential
oxygen, resulting in tissue damage and potentially culminating
in organ failure. The probability of survival decreases by about
10% with each passing minute without intervention; therefore,
immediate and effective treatment is crucial to enhance survival
rates by minimizing damage to tissues and organs [7,8].

Efforts to deliver prompt care to SCA victims continue, with
emergency medical services (EMS) prioritizing SCAs to
expedite emergency responses [9,10]. Public data indicate that
the target for EMS response time to an SCA event is within
8-10 minutes [5,11-14]. The initial treatment involves
performing cardiopulmonary resuscitation (CPR) and using an
automated external defibrillator (AED) to assist in heart
pumping and maintain blood flow to the brain and other vital
organs. In certain instances, an AED can also restore the heart’s
electrical activity [6,15].

Organizations such as the American Heart Association (AHA)
and the Red Cross play a pivotal role in providing CPR and
AED training to the public, empowering bystanders to
administer early care to SCA victims until EMS arrives. Studies
indicate that bystander-administered CPR significantly improves
survival rates compared with scenarios where CPR is not
administered [16-18]. The quality of CPR is critical, as
high-quality CPR is associated with increased chances of
survival. The AHA defines high-quality CPR as having a
compression depth of 5-6 cm and a rate of 100-120
compressions per minute, standards that are also supported by
the European Resuscitation Council [19,20].

Training the general public in CPR administration has emerged
as a key objective for numerous organizations aiming to improve
survival rates for SCA patients [21,22]. If a significant portion
of the populace receives training in CPR, SCA victims stand a
higher chance of receiving necessary immediate care until EMS
arrive, thereby enhancing their survival prospects. Public
training programs instruct participants on identifying SCA
victims and initiating high-quality CPR. In these sessions,
participants engage in CPR practice on mannequins while
trainers offer real-time feedback on their performance, ensuring
proficiency [23-25]. With advancements in technology, CPR
performance can now be quantified, allowing feedback to be
grounded in these measurements. Technologies used in training
encompass sensor-equipped mannequins and CPR feedback
devices.

Mannequins equipped with sensors accurately assess
compression depth and frequency, providing trainers with
metrics to deliver precise feedback to trainees. Beyond training
devices, the industry also offers devices that can be placed on
the chest of a mannequin or patient. These devices are equipped
with accelerometers and pressure sensors to accurately assess
CPR performance and transmit the information to another device

for providing real-time feedback. The Laerdal CPRMeter2 is
an example of such a device [26].

For SCA incidents, emergency call operators use technologies
like tele CPR and video CPR to assist individuals in achieving
high-quality CPR [27-29]. Upon identifying an SCA situation,
EMS is dispatched, and the caller is guided over the phone on
performing CPR. Nevertheless, the operator cannot gauge the
quality of compressions administered, providing only verbal
instructions to help the caller maintain an appropriate pace,
which leaves compression depth uncertain. Video CPR, as an
advanced approach, transitions communication from audio to
video, allowing the operator to observe the CPR performance
and offer real-time feedback. This technology requires
advancements in emergency response systems to support video
calling capabilities and necessitates video capability on the
caller’s part. A limitation is its dependency on 2
bystanders—one to execute CPR and another to capture it.

Researchers have delved into next-generation CPR feedback
technologies, including virtual reality and augmented
reality–based devices [30-33]. These devices employ integrated
cameras to capture and analyze compression depth and rate,
displaying real-time statistics on the device screen to aid users
in enhancing their CPR performance [34,35]. However, the
widespread adoption of such advanced technologies encounters
obstacles: they are not always accessible to those who do use
them.

Therefore, the challenge lies in identifying a device suitable for
real-world emergencies that can precisely measure CPR
performance and provide appropriate feedback without the
necessity for specialized hardware. The literature identifies
smartphones and smartwatches as 2 potential solutions [36-38].
Both types of devices are equipped with sensors capable of
evaluating CPR performance. Song et al [39] introduced a
mobile app that leverages accelerometer data from smartphones
to assess compression quality and provide feedback via screen
displays and audio cues. Nonetheless, this approach faces
limitations; it necessitates attaching the smartphone to the user’s
arm, lacks details on data cleaning and noise removal, and does
not consider variations in device orientation [40]. Similar
challenges are evident in other algorithms designed for mobile
CPR apps [41-43], with many focusing solely on training
scenarios rather than real emergencies.

Gruenerbl et al [44] proposed a smartwatch app capable of
measuring CPR parameters and offering visual feedback. This
app analyzes accelerometer data to evaluate compression quality,
identifying each positive peak on the y-axis as a compression
and calculating the differences in y-axis peaks to determine
compression depth. However, the study does not provide
detailed algorithmic and data-cleaning methodologies for
replication and comparison.

Lu et al [45] also proposed a smartwatch app alongside an
algorithm for evaluating compression metrics. They tested using
a Resusci Anne QCPR training manikin (Laerdal) and an android
ASUS ZenWatch 2 (model WI501Q; ASUSTeK Computer Inc).
The developed polynomial model predicts compression depth
and rate from smartwatch accelerometer data. Although data
were collected, its limited variability—compression counts
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between 80-140 and depths of 4-7 cm—fails to cover the wider
range expected in real-world scenarios, nor does it elaborate on
data cleaning or handling irregularities.

Using smartwatch accelerometer data presents several
challenges, such as sensor white noise, gravitational effects,
hand movements, and shifts in the watch’s position due to a
loose fit. Filtering such noise from sensor data remains a
significant challenge [46]. Employing noisy datasets can result
in substantial variations in output results over time. To tackle
noise filtration, we propose a neural network model trained on
noisy data to predict compression performance, as detailed in
the Methods section.

Methods

Overview
This section presents the technology and equipment used during
the data collection, cleaning, and processing phases. A total of
83 participants from Thunder Bay Regional Health Sciences
Centre (TBRHSC) took part in the data collection by performing
CPR in a controlled simulation setting, using an Apple Watch,
Apple iPhone, and a Laerdal mannequin for data capture [26,47].

Equipment and Hardware
Participants collected accelerometer data with an Apple Watch
Series 7 while performing CPR, which was then stored on an
Apple iPhone 14. These devices, chosen for their significant
presence in the wearable segment, were equipped with specially
developed apps for data collection and analysis [48,49]. This
study differs from previous ones by focusing on the potential
of the Apple ecosystem for health care apps, rather than on
Android devices. The apps were designed for compatibility with
Apple iPhone 10 and newer, as well as Apple Watch Series 3
and later models.

CPR performance practice occurred on the Laerdal SimMan
3G mannequin, which is outfitted with sensors that record and
provide feedback on key compression quality metrics such as
depth, rate, and recoil. This aids in improving CPR quality [50].
Laerdal mannequins were chosen, as in other studies, for their
precise data capture capabilities [39,40,44].

Data analysis was performed using a laptop with an i7 Intel
processor, 32 GB RAM, and a 1TB hard drive, using Microsoft
Excel and Python for data cleaning, processing, model training,
and evaluation. Final analyses were done on a cloud server
(Amazon Web Services) equipped with an NVIDIA A10G GPU
(24 GB GPU Memory), 32 GB RAM, and 8 vCPUs [51].

Data Collection
A convenience sampling method was used in this study. A notice
was sent around the hospital and health care providers including
doctors, nurses, respiratory therapists, and paramedics were
recruited to participate. Data for this study were collected from
83 individuals over a 3-month period. Staff members from
TBRHSC were invited to participate in the research, with their
CPR experience ranging from none to more than 30 instances.
Initially, participants received a brief orientation on CPR
techniques and the benchmarks for high-quality CPR
performance.

The simulation laboratory at TBRHSC, equipped with a Laerdal
SimMan 3G mannequin capable of measuring compression
depth, rate, and recoil, served as the setting for data collection.
Upon arriving at the laboratory, participants received an Apple
Watch containing the necessary data collection application. The
participants were given training on how to perform high-quality
CPR. After training, the participants were asked to perform
CPR for 2 minutes, during which the data would be recorded.
During these 2 minutes, participants were not provided with
any feedback on their performance. A limited number of
participants (n=41) performed another round of 2 minutes of
CPR after taking a short 10-minute break.

When participants were ready to perform CPR after training,
they were positioned correctly beside the mannequin, placing
their hands on its chest, and initiated CPR compressions upon
commencing data collection via the Apple Watch and
mannequin. This procedure was carried out for 2 minutes, after
which participants were advised to keep their hands in place on
the mannequin to mitigate the potential introduction of noise
in the data caused by removing their hands. The protocol was
approved by TBRHSC and is attached as a Multimedia
Appendix 1.

Subsequently, data from the Apple Watch and the mannequin
were exported with a unique anonymous identifier to link the
datasets without disclosing the identities of the participants.
The process of data collection and the following data
transmission is delineated in Figure 1. The data were securely
transferred daily to the lead author’s workstation. The app on
the Apple Watch recorded accelerometer data, including
timestamps at a 50 Hz frequency. The mannequin’s data yielded
detailed insights into each compression, providing metrics on
depth, recoil completeness, start and end times of compression,
and the peak time of compression. It is important to note that
the mannequin’s time stamps were relative to the onset of the
data collection period rather than an absolute start time.
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Figure 1. The flow diagram shows the screenshots of iPhone and Apple Watch apps, and the data flow used to collect the data during the study. CPR:
cardiopulmonary resuscitation.

In aggregate, the study compiled 256 minutes of CPR data,
which included 27,844 compressions with an average depth of
44 (SD 4) mm. Of the 83 contributing participants, 27 were
male, and 56 were female; 48 of these individuals had previously
performed CPR on more than 10 occasions.

The sample size was determined by the number of eligible
participants available during the data collection period, using
a convenience sampling approach. While no formal power
analysis was conducted, the sample size of 83 participants was
considered sufficient to meet the study’s objectives. Notably,
previous studies in similar domains have used smaller sample
sizes—Gruenerbl et al [44] included 50 participants, and Lu et
al [45] conducted their study with just 8 participants. In addition,
some participants in our study performed CPR twice, resulting
in 124 distinct datasets, further enhancing the dataset’s richness
and utility for training and evaluation.

Data Cleaning and Preparation for Model Training

Overview
This study used data from 2 sources—an Apple Watch app and
exported data from a mannequin. Each source’s data were
recorded in separate files, but a unique identifier linked them
for consistency throughout the data cleaning and preprocessing
stages. Figure 2 illustrates the process of preparing the raw data
for model training and the collected sample files.

The mannequin’s data, exported as a comprehensive list of
compressions during each session, served as the gold standard
due to the sensors’ precise compression depth, rate, and recoil
measurements. Meanwhile, the Apple Watch provided
time-stamped accelerometer data across the x-, y-, and z-axes,
formatted as comma-separated values (CSVs). Both datasets
included detailed compression information, enabling analysis
of 2-minute CPR sessions.
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Figure 2. (A) The flow diagram illustrates the process for preparing the data for model training and sample data from XML and CSV files. (B) XML
data file sample, showing data for 1 compression collected from the Laerdal mannequin. (C) CSV file sample, showing data collected from the Apple
smartwatch. CSV: comma-separated value.

For each session involving a pair of mannequin and smartwatch
datasets, a 2-minute duration was recorded. The data were
segmented into smaller portions to facilitate prompt feedback,
potentially enabling real-time feedback. This segmentation
process involved two critical steps: (1) aligning the datasets
from the mannequin and the smartwatch to ensure their data
corresponded accurately for analysis, detailed in subsection
“Data Matching (Process 1)”; and (2) executing the chunking
algorithm, detailed in the subsection “Data Chunking (Process
2).”

While real time user feedback was beyond this project’s scope,
the data were examined to assess future applicability for this
purpose. A 5-second analysis window was selected for potential
feedback, where high-quality CPR—defined by approximately
10 compressions within this period—was used as the feedback
standard. After receiving feedback, users would need time to
comprehend and adjust their technique before the next feedback
prompt.

Data Matching (Process 1)
The 2 data sources have different structures: the mannequin
(XML file) records a sequence of compression events and their
properties, while the smartwatch logs (CSV file) contain

time-series accelerometer data. Because of this difference,
synchronization cannot be based on time stamps. Instead, the
datasets are aligned based on compression events, as the focus
is on analyzing compression depth and frequency. The first step
is to identify when compressions occurred using the
accelerometer data, as explained further in this study. Once
these events are detected, they can be matched with the
corresponding compression depth and other properties from the
XML file.

A chest compression pattern typically indicates a peak in
acceleration when the CPR performer compresses the chest, as
shown in Figure 3. Due to sensor noise and the performer’s
hand movement vibrations, various peaks can appear in the
data; however, only a few of these should be considered valid
compressions. The XML file from the mannequin specifies the
number of compressions performed, which serves as the gold
standard for creating an algorithm to identify compression peaks
in the CSV file.

After analyzing the accelerometer data from the compressions,
3 variables were identified to help determine if a peak is a valid
compression peak. First, the acceleration difference: the change
in acceleration at the compression peak should be significant.
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Second, the window size is the time frame within which a peak
can occur; for example, 2 compressions cannot happen within
5 microseconds. Third, the minimum acceleration peak helps
filter out recoil peaks or peaks caused by vibrations or sensor
noise. These values may vary from one compression to another,
even if performed by the same person, due to factors such as
user fatigue, incomplete recoil, changes in compression rate, or
varying compression force.

To handle variability, algorithm 1 (Figure 4) was designed to
match the “peaksFoundInCSV” with the peaks recorded in the

XML file. The authors used SciPy’s find_peaks function to
detect peaks in the CSV file based on 3 key
variables—acceleration difference, window size, and minimum
acceleration peak. Since these values varied across files, a script
iterated through a range of values—acceleration difference
(0.01-2), window size (1-40), and minimum acceleration peak
(–1 to 2)—with step sizes of 0.2, 3.9, and 0.3, respectively, until
the detected peaks matched those in the XML file. To verify
accuracy, random manual checks were performed by generating
graphs, similar to Figure 3, to ensure the peaks were correctly
identified and aligned.

Figure 3. Process 1: The diagram illustrates a representative output showing the mapping of compressions in the XML data (mannequin data) with the
compressions detected in the accelerometer data (smartwatch data).

Figure 4. Pseudocode to generate matches between compressions in mannequin and accelerometer data files (algorithm 1).
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Data Chunking (Process 2)
A 5-second interval was chosen as the optimal chunking
duration, with the rationale for this selection explained in the
previous section. Subsequently, the aligned datasets underwent
segmentation into chunks for detailed analysis. Figure 5
illustrates the segmentation process applied to a representative
dataset. Following the alignment of accelerometer data with the
mannequin’s compression peaks, the accelerometer readings
were divided into 300-point segments (indicated by a green
box). Each segmented block (denoted by a green box) was then

documented as a single record within the dataset used for
training the proposed model, formatted in CSV. These records
encompassed acceleration data for a 5-second interval
(equivalent to 300 data points at a 60 Hz sampling rate),
alongside the average compression depth and the total number
of compressions recorded within that timeframe. For instances
where the dataset was less than 5 seconds in length, the
acceleration data was padded with zeros at the end to standardize
it to a 5-second duration. The zero padding was performed on
124 records. The datasets prepared through this method were
subsequently used to train the neural network model.

Figure 5. Process 2: Illustration of combining accelerometer and mannequin data to create the dataset for training the neural network model.

Model to Predict CPR Performance
The aim of this study was to evaluate CPR performance by
analyzing accelerometer data collected from smartwatches,
which inherently included various forms of sensor noise, such
as vibrations due to hand movements and accelerations not
associated with chest compressions. The direct elimination of
this noise was deemed impractical; therefore, the decision was
made to use a supervised learning approach, specifically a neural
network model, to tackle this intricate challenge.

During model testing, the training data was randomly selected
from 5-second chunks (2701 records), which could result in
partial data from a participant appearing in both the training
and test sets. However, since these chunks were not directly
comparable, as determined during the review, the data were not
split by participants. Although neural networks typically assume

that data are independent and identically distributed, this study’s
approach does not violate this assumption. Figure 6 illustrates
the CPR performance of 3 participants over 100 seconds,
summarized in 5-second intervals. Each chunk is treated as an
independent data point, with no relationship to the previous or
next chunk. The objective of this research is to randomly select
a 5-second chunk and predict compression depth and count
based on the accelerometer data, independent of past or future
data. Since the model is trained to make predictions on isolated
chunks rather than sequential patterns, the independent and
identically distributed assumption holds, and data splitting by
participants is not necessary. Figure 6 shows that compression
depth declined over time and compression counts varied
significantly. However, since the model does not rely on
temporal dependencies, each chunk remains independent,

JMIR Mhealth Uhealth 2025 | vol. 13 | e57469 | p. 7https://mhealth.jmir.org/2025/1/e57469
(page number not for citation purposes)

Rao et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


justifying the decision not to split data by participants for
training and testing.

The dataset was randomly split into 80% (2161/2701) training
and 20% (540/2701) validation test sets. Each record consisted
of 300 accelerometer data points, corresponding to a duration
of 5 seconds at a 60 Hz sampling rate. The objective of the
model is to predict both the number of compressions and their
average depth during this interval.

The development of the model used the TensorFlow library
within the Python programming environment [52]. To optimize
the model’s performance, a combination of grid search and
Hyperband techniques was used. In each experiment, grid search
was used to explore a broad range of hyperparameters,
identifying configurations that performed well or poorly. In
addition, the Hyperband technique was applied to refine the
search by excluding poorly performing hyperparameter sets,
thereby narrowing the search space. This process was repeated
iteratively, with grid search expanding the search range in each

new experiment, followed by Hyperband reducing it to eliminate
ineffective configurations. The key hyperparameters adjusted
included the number of hidden layers, layer sizes, number of
epochs, batch sizes, and dropout rates. The objective was to
determine the most effective combination of hyperparameters
that would allow the model to accurately interpret accelerometer
data, despite sensor noise, and reliably assess CPR quality based
on smartwatch data.

To evaluate the normality of the data and assess the correlation
between actual and predicted values, 2 statistical tests were
conducted. First, the Shapiro-Wilk test was performed on the
expected depth and expected compression count to determine
if the data followed a normal distribution. The results showed
P values of 2.69×10 ³  and 2.80×10 ⁴ , respectively, indicating
that both datasets deviated significantly from normality. Given
this, Spearman rank correlation was chosen to measure the
relationship between expected versus predicted depth and
compression counts since it does not assume normality.

Figure 6. Variation in compression depth and compression rate among three participants over 100 seconds of CPR performance.

Ethical Considerations
The research ethics evaluation for this study was reviewed and
approved by the TBRHSC Research Ethics Board (2022519),
with all procedures conducted in accordance with the ethical
standards of the responsible institutional committee and the
principles outlined in the World Medical Association
Declaration of Helsinki. Written informed consent was obtained
from all participants before their inclusion in the study. To
maintain privacy and confidentiality, all data collected were
deidentified at the point of collection, with each participant
assigned a unique identifier; a separate, secure document
mapping participant identities to these identifiers was maintained
independently and was not linked to the research data.

Participants were compensated with a US $5 gift card for their
participation.

Results

Table 1 contains the demographic details of participants
involved in the data collection process. A total of 83 individuals
contributed, resulting in 124 mannequin-smartwatch datasets,
with 41 participants completing 2 rounds of CPR. The sample
included 56 females and 27 males, spanning various age groups,
with the largest group being younger than 30 years old.
Participants also varied in their previous CPR experience,
ranging from no previous attempts to over 30, offering a diverse
dataset in terms of skill level and background.

JMIR Mhealth Uhealth 2025 | vol. 13 | e57469 | p. 8https://mhealth.jmir.org/2025/1/e57469
(page number not for citation purposes)

Rao et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic details of participants in the data collection process.

Number of participants, nDescription

124Number of mannequin-smartwatch datasets

83Number of participants

41Participants performing 2 rounds of CPRa

Sex

56Female

27Male

Age groups (y)

42<30

2730-39

840-49

6>50

Previous CPR attempts

120

231-9

1010-19

1420-29

2430+

aCPR: cardiopulmonary resuscitation.

A series of experiments were systematically conducted,
exploring various hyperparameters and datasets, until no notable
improvements in outcomes were observed. This investigative
process entailed 12 different experiments to find the optimal
set of hyperparameters. Within each trial, data on the variations
in hyperparameters were documented, noting the discrepancies
between anticipated and actual compression depths and counts.
Given that the variance between expected and observed results
could manifest in negative figures, potentially skewing average
calculations, absolute values were used for a more accurate
determination of the average and median. These analytical steps
informed adjustments in hyperparameters for ensuing
experiments aimed at enhancing performance.

Throughout this extensive testing phase, a total of 1226
iterations were conducted, each exploring different
hyperparameter settings. The specific settings and the best
outcomes from each experiment are presented in Table 2, while
detailed information on each experiment is provided in
Multimedia Appendix 2. Summarizing the testing, the most

effective model across all iterations was characterized by the
following hyperparameters: hidden layers configured as (2000,
1000, 250, 100, 50), a batch size of 2000 epochs, and a dropout
rate of 10% after every 2 layers. Predictions from this model
demonstrated an average absolute loss in compression depth of
3.8 (SD 0.16) mm and in compression count of 0.8 (SD 0.05)
counts, with a median absolute loss for compression depth at
2.59 (IQR 0.24) mm and for compression count at 0.03 counts.
Throughout the course of the experiments, 27 models were
identified as capable of predicting an average absolute
compression depth below 4.0 mm.

The Spearman correlation coefficients were 0.80 and 0.78,
respectively, with P values of 1e-3, indicating a strong and
statistically significant positive correlation between actual and
predicted values for both compression depth and compression
count. These findings suggest that the model effectively predicts
compression depth and count, even though the underlying data
distribution is not normal.

JMIR Mhealth Uhealth 2025 | vol. 13 | e57469 | p. 9https://mhealth.jmir.org/2025/1/e57469
(page number not for citation purposes)

Rao et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Summarizing hyperparameters for each experiment and the best results achieved.

Best result (compression
depth, count)

Connection dropoutNumber of
layers

Layer sizesBatch
size

EpochsExperiment

±4.8 mm, 1.2 counts10% after every 2 layers310, 35, 60, 85, 100, 400, 700,
1000, 1200

3, 5, 7,
9, 11

101

±4.0 mm, 0.9 counts10% after every 2 layers3, 410, 35, 60, 85, 100, 400, 700,
1000, 1200

6, 12,
18

100, 5002

±4.8 mm, 1.2 counts10% after every 2 layers4, 65, 40, 100, 500, 900, 130018, 24500, 7503

±3.9 mm, 0.9 counts10% after every 2 layers4, 65, 40, 100, 500, 900, 130018, 24500, 7504

±3.9 mm, 0.8 counts10% after every 2 layers45, 10, 60, 100, 400, 700, 100018, 24500, 7505

±6.2 mm, 1.2 counts10% after every 2 layers4, 55, 10, 50, 100, 500, 1000, 40006, 24500, 7506

±4.0 mm, 0.9 counts10% after every 2 layers55, 10, 50, 100, 500, 1000, 4000310007

±3.9 mm, 0.9 countsNo dropouts55, 10, 50, 100, 500, 1000, 40001210008

±4.1 mm, 0.9 countsNo dropouts35, 10, 50, 100, 500, 1000, 40003, 1210009

±4.1 mm, 0.9 counts10% after every 2 layers35, 10, 25, 50, 75, 100, 250, 500,
1000, 1250, 1500, 1750, 2000,
2250, 2500, 2750, 3000, 3250,
3500, 3750, 4000

3, 9100, 500,
1000

10

±3.9 mm, 0.8 counts10% after every 2 layers55, 10, 25, 50, 75, 100, 250, 500,
1000, 1250, 1500, 1750, 2000,
2250, 2500, 2750, 3000, 3250,
3500, 3750, 4000

3, 128100, 100011
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Discussion

Overview
This study introduces a neural network model capable of using
accelerometer data from a smartwatch to guide users in
delivering high-quality CPR. To facilitate this, apps for both
Apple Watch and iPhone were developed to gather
accelerometer data during CPR. This research compiled data
from 83 participants using Apple Watches to perform CPR on
a mannequin, resulting in a total of 27,844 chest compressions.
A total of 1226 experiments were conducted to evaluate different
hyperparameter settings. The most effective model used hidden
layers (2000,1000,250,100,50), a batch size of 2000, and a 10%
dropout after every 2 layers. This model achieved an average
absolute loss of 3.8 mm in compression depth and 0.8 in
compression count, with median losses of 2.59 mm and 0.03
counts, respectively. In total, 27 models achieved an average
absolute compression depth loss of less than 4.0 mm.

Principal Results
Considering mannequin data as the benchmark, the neural
network was trained with the accelerometer data to emulate the
mannequin’s feedback. After undergoing 1226 iterations of
model refinement, the optimal model emerged, capable of
estimating compression depth with an average discrepancy of
3.8 mm and compression count with an average discrepancy of
0.8 counts across 5-second intervals. This investigation
underscores the potential of a neural network model to surpass
existing models in predicting CPR quality, underpinned by a

more extensive and realistic dataset than those previously
reported in the literature [40,44,45,53-55].

Comparison With Previous Work
Numerous studies have highlighted significant enhancements
in CPR quality when performers receive real-time feedback
through intelligent technologies [40,53,56]. Gruenerbl et al [44]
proposed a smartwatch app capable of measuring CPR
parameters and offering visual feedback. This app analyzes
accelerometer data to evaluate compression quality, providing
user feedback to achieve high-quality compressions. Lu et al
[45] also proposed a smartwatch app alongside an algorithm
for evaluating compression metrics. However, these proposed
solutions are developed on limited datasets and do not provide
sufficient details to reproduce or enhance the system. Dedicated
devices, such as the Laerdal CPRMeter2, which can be placed
on the chest of a mannequin or patient, are available for
purchase. These devices are equipped with accelerometers and
pressure sensors to accurately assess CPR performance and
provide real-time feedback [26]. However, these devices are
expensive and must be carried by the user at all times, as
emergencies can occur at any moment.

Limitations
This study demonstrates that the accelerometer data from the
smartwatch can be used to provide real-time feedback to the
CPR performer and can help increase the survival chances of
the patient. However, there are a few limitations worth noting.
First, the developed model focuses on measuring compression
depth and count but does not account for compression recoil.
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Compression recoil plays an important role in performing
high-quality CPR, as it allows the patient’s chest to fully expand.
This full expansion enables more air to enter the patient’s body.
Compression recoil can also be measured using acceleration
data from the smartwatch and compared with sensor data from
the mannequin, similar to how compression events are measured.
In future research, the authors plan to include this factor as well.

Second, the Apple Watch Series 7 was the exclusive device
used to collect data during this study. However, sensors in
smartwatches vary between brands, models, and versions, each
having its own set of white noise that may impact the results.
Therefore, it is necessary to investigate how other devices with
different sensors perform with the presented model and whether
the model needs to be tuned for each device type. In future
studies, the authors plan to use an Android device to cover a
broader spectrum of sensors.

Third, during data collection, it was observed that the sensor
data frequency fluctuated between 48-60 Hz, although the
collection rate was set to 60 Hz. This fluctuation could be due
to several reasons: slower processing on the device, the device’s
inability to write data at that frequency to the file, or the device’s
processing speed being unable to read the data from the sensors
at this speed. Therefore, it is important to investigate how the
model’s performance would be affected if the data frequency
were lowered.

Fourth, while working with the Apple Watch, the authors found
a limitation that restricts its use during emergency events. The

Apple Watch only allows an app to run in the background for
30 seconds before it is suspended, after which the app can only
execute its tasks intermittently. This restriction hinders the use
of the smartwatch for providing real-time feedback during
emergencies.

Finally, in data segmentation, the acceleration data were
chunked based on a fixed number of data points (300,
representing 5 seconds of data at 60 Hz). This chunking may
occur during a compression event, potentially splitting the
compression event into 2 parts, which the algorithm may not
recognize, resulting in missed compressions. In future research,
the authors plan to address this problem by introducing an
advanced algorithm that can recognize the completion of a
compression event and then segment the data accordingly to
avoid splitting compression data.

Conclusions
This study presents a neural network model designed to gauge
the rate and depth of CPR compressions accurately. The model
has undergone training on a large dataset, ensuring a robust
foundation for its predictive capabilities. Its accuracy is
remarkably close to the measurements obtained from a CPR
mannequin, serving as a benchmark for comparison. Notably,
this model demonstrates superior performance when compared
with other models discussed within the existing literature,
establishing it as a significant advancement in the field of
medical emergency training and response analysis.
Implementation of this model in real-world scenarios could
significantly improve SCA survival rates.
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