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Abstract

Background: Sudden cardiac arrest is a major cause of mortality, necessitating immediate and high-quality cardiopulmonary
resuscitation (CPR) for improved survival rates. High-quality CPR is defined by chest compressions at a rate of 100-120 per
minute and adepth of 50-60 mm. M onitoring and maintai ning these parametersin real time during emergenciesremain achallenge.

Objective: This study introduces a neural network model designed to predict and assess CPR quality using accelerometer data
from a smartwatch.

Methods: The study involved 83 participants performing CPR on mannequins, with accel erometer data collected viasmartwatches
worn by the participants. These data were aligned with gold-standard data from the mannequins. The accelerometer-derived
compression data were segmented into 5-second intervals for training the neural network models. A total of 1226 neural network
models were devel oped, incorporating variationsin hyperparameters and dataset configurations to optimize performance.

Results:. The optima model demonstrated the capability to accurately predict the number of compressions and the average
compression depth within a5-second interval. The model achieved an accuracy of +£3.8 mm for compression depth and an average
deviation of 0.8 compressions. The results indicated that the neural network model could accurately assess CPR quality metrics,
surpassing other models discussed in the literature. The large and diverse dataset used in this study contributed to the robustness
and reliability of the model.

Conclusions: Thisstudy validates the efficacy of aneural network model in accurately predicting CPR metrics using smartwatch
accelerometer data. The model outperforms previous methods and shows promise for real-time feedback during CPR. Future
work involves deploying the model directly on smartwatches for real-time application, potentially improving sudden cardiac
arrest surviva rates through immediate and accurate feedback on CPR quality.
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Introduction

Sudden cardiac arrest (SCA) is identified as a principa cause
of mortality in North America, particularly among young
athletes [1-4]. It can affect individuals irrespective of their
lifestyle or health status, leading to either irregular or
nonexistent heart rhythms[5,6]. As a consequence, the flow of
blood to major organs is halted, depriving them of essential
oxygen, resulting in tissue damage and potentially culminating
in organ failure. The probability of survival decreases by about
10% with each passing minute without intervention; therefore,
immediate and effective treatment is crucial to enhance survival
rates by minimizing damage to tissues and organs [7,8].

Efforts to deliver prompt care to SCA victims continue, with
emergency medical services (EMS) prioritizing SCAS to
expedite emergency responses [9,10]. Public data indicate that
the target for EMS response time to an SCA event is within
8-10 minutes [5,11-14]. The initial treatment involves
performing cardiopulmonary resuscitation (CPR) and using an
automated external defibrillator (AED) to assist in heart
pumping and maintain blood flow to the brain and other vital
organs. In certain instances, an AED can also restorethe heart’s
electrical activity [6,15].

Organizations such as the American Heart Association (AHA)
and the Red Cross play a pivotal role in providing CPR and
AED training to the public, empowering bystanders to
administer early careto SCA victimsuntil EM S arrives. Studies
indicate that bystander-administered CPR significantly improves
survival rates compared with scenarios where CPR is not
administered [16-18]. The quality of CPR is critical, as
high-quality CPR is associated with increased chances of
survival. The AHA defines high-quality CPR as having a
compression depth of 56 cm and a rate of 100-120
compressions per minute, standards that are also supported by
the European Resuscitation Council [19,20].

Training the general public in CPR administration has emerged
asakey objectivefor numerous organizations aiming toimprove
survival rates for SCA patients [21,22]. If asignificant portion
of the populace receives training in CPR, SCA victims stand a
higher chance of receiving necessary immediate careuntil EMS
arrive, thereby enhancing their survival prospects. Public
training programs instruct participants on identifying SCA
victims and initiating high-quality CPR. In these sessions,
participants engage in CPR practice on mannequins while
trainers offer real-time feedback on their performance, ensuring
proficiency [23-25]. With advancements in technology, CPR
performance can now be quantified, allowing feedback to be
grounded in these measurements. Technologiesused intraining
encompass sensor-equipped mannequins and CPR feedback
devices.

Mannequins equipped with sensors accurately assess
compression depth and frequency, providing trainers with
metricsto deliver precise feedback to trainees. Beyond training
devices, the industry also offers devices that can be placed on
the chest of amannequin or patient. These devices are equipped
with accelerometers and pressure sensors to accurately assess
CPR performance and transmit the information to another device
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for providing real-time feedback. The Laerda CPRMeter2 is
an example of such adevice[26].

For SCA incidents, emergency call operators use technologies
like tele CPR and video CPR to assist individualsin achieving
high-quality CPR [27-29]. Upon identifying an SCA situation,
EMS s dispatched, and the caller is guided over the phone on
performing CPR. Nevertheless, the operator cannot gauge the
quality of compressions administered, providing only verbal
instructions to help the caller maintain an appropriate pace,
which leaves compression depth uncertain. Video CPR, as an
advanced approach, transitions communication from audio to
video, allowing the operator to observe the CPR performance
and offer rea-time feedback. This technology requires
advancementsin emergency response systemsto support video
calling capabilities and necessitates video capability on the
cdler's part. A limitation is its dependency on 2
bystanders—one to execute CPR and another to captureit.

Researchers have delved into next-generation CPR feedback
technologies, including virtual reality and augmented
reality—based devices[30-33]. These devicesemploy integrated
cameras to capture and analyze compression depth and rate,
displaying real-time statistics on the device screen to aid users
in enhancing their CPR performance [34,35]. However, the
widespread adoption of such advanced technol ogies encounters
obstacles: they are not always accessible to those who do use
them.

Therefore, the challengeliesin identifying adevice suitablefor
real-world emergencies that can precisely measure CPR
performance and provide appropriate feedback without the
necessity for specialized hardware. The literature identifies
smartphonesand smartwatches as 2 potential solutions[36-38].
Both types of devices are equipped with sensors capable of
evaluating CPR performance. Song et a [39] introduced a
mobile app that |everages accel erometer datafrom smartphones
to assess compression quality and provide feedback via screen
displays and audio cues. Nonetheless, this approach faces
limitations; it necessitates attaching the smartphoneto the user’s
arm, lacks details on data cleaning and noise removal, and does
not consider variations in device orientation [40]. Similar
challenges are evident in other algorithms designed for maobile
CPR apps [41-43], with many focusing solely on training
scenarios rather than real emergencies.

Gruenerbl et a [44] proposed a smartwatch app capable of
measuring CPR parameters and offering visual feedback. This
app analyzes accelerometer datato eval uate compression quality,
identifying each positive peak on the y-axis as a compression
and calculating the differences in y-axis peaks to determine
compression depth. However, the study does not provide
detailed agorithmic and data-cleaning methodologies for
replication and comparison.

Lu et a [45] also proposed a smartwatch app alongside an
algorithm for evaluating compression metrics. They tested using
aResusci Anne QCPR training manikin (Laerdal) and an android
ASUS ZenWatch 2 (model WI501Q; ASUSTeK Computer Inc).
The developed polynomia model predicts compression depth
and rate from smartwatch accelerometer data. Although data
were collected, its limited variability—compression counts
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between 80-140 and depths of 4-7 cm—failsto cover the wider
range expected in real-world scenarios, nor doesit elaborate on
data cleaning or handling irregul arities.

Using smartwatch accelerometer data presents several
challenges, such as sensor white noise, gravitational effects,
hand movements, and shifts in the watch’s position due to a
loose fit. Filtering such noise from sensor data remains a
significant challenge [46]. Employing noisy datasets can result
in substantial variations in output results over time. To tackle
noise filtration, we propose a neural network model trained on
noisy data to predict compression performance, as detailed in
the Methods section.

Methods

Overview

This section presents the technology and equipment used during
the data collection, cleaning, and processing phases. A total of
83 participants from Thunder Bay Regional Health Sciences
Centre (TBRHSC) took part in the data collection by performing
CPR in acontrolled simulation setting, using an Apple Watch,
AppleiPhone, and aL aerdal mannequin for data capture[26,47].

Equipment and Hardware

Participants collected accelerometer data with an Apple Watch
Series 7 while performing CPR, which was then stored on an
Apple iPhone 14. These devices, chosen for their significant
presence in the wearabl e segment, were equipped with specially
developed apps for data collection and analysis [48,49]. This
study differs from previous ones by focusing on the potential
of the Apple ecosystem for health care apps, rather than on
Android devices. The appswere designed for compatibility with
Apple iPhone 10 and newer, as well as Apple Watch Series 3
and later models.

CPR performance practice occurred on the Laerdal SimMan
3G manneguin, which is outfitted with sensors that record and
provide feedback on key compression quality metrics such as
depth, rate, and recoil. Thisaidsinimproving CPR quality [50].
Laerdal manneguins were chosen, as in other studies, for their
precise data capture capabilities [39,40,44].

Data analysis was performed using a laptop with an i7 Intel
processor, 32 GB RAM, and a 1TB hard drive, using Microsoft
Excel and Python for data cleaning, processing, model training,
and evaluation. Final analyses were done on a cloud server
(Amazon Web Services) equipped withan NVIDIA A10G GPU
(24 GB GPU Memory), 32 GB RAM, and 8 vCPUs [51].
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Data Collection

A convenience sampling method was used in this study. A notice
was sent around the hospital and health care providersincluding
doctors, nurses, respiratory therapists, and paramedics were
recruited to participate. Datafor this study were collected from
83 individuas over a 3-month period. Staff members from
TBRHSC wereinvited to participate in the research, with their
CPR experience ranging from none to more than 30 instances.
Initially, participants received a brief orientation on CPR
techniques and the benchmarks for high-quality CPR
performance.

Thesimulation laboratory at TBRHSC, equipped with aLaerdal
SimMan 3G mannequin capable of measuring compression
depth, rate, and recoil, served as the setting for data collection.
Upon arriving at the laboratory, participants received an Apple
Watch containing the necessary data collection application. The
participants were given training on how to perform high-quality
CPR. After training, the participants were asked to perform
CPR for 2 minutes, during which the data would be recorded.
During these 2 minutes, participants were not provided with
any feedback on their performance. A limited number of
participants (n=41) performed another round of 2 minutes of
CPR after taking a short 10-minute break.

When participants were ready to perform CPR after training,
they were positioned correctly beside the mannequin, placing
their hands on its chest, and initiated CPR compressions upon
commencing data collection via the Apple Watch and
manneguin. This procedure was carried out for 2 minutes, after
which participants were advised to keep their handsin place on
the mannequin to mitigate the potential introduction of noise
in the data caused by removing their hands. The protocol was
approved by TBRHSC and is attached as a Multimedia
Appendix 1.

Subsequently, data from the Apple Watch and the mannequin
were exported with a unique anonymous identifier to link the
datasets without disclosing the identities of the participants.
The process of data collection and the following data
transmission is delineated in Figure 1. The data were securely
transferred daily to the lead author’s workstation. The app on
the Apple Watch recorded accelerometer data, including
timestamps at a50 Hz frequency. The mannequin’s datayielded
detailed insights into each compression, providing metrics on
depth, recoil completeness, start and end times of compression,
and the peak time of compression. It is important to note that
the mannequin’s time stamps were relative to the onset of the
data collection period rather than an absolute start time.
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Figure 1. Theflow diagram shows the screenshots of iPhone and Apple Watch apps, and the data flow used to collect the data during the study. CPR:

cardiopulmonary resuscitation.
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In aggregate, the study compiled 256 minutes of CPR data,
which included 27,844 compressions with an average depth of
44 (SD 4) mm. Of the 83 contributing participants, 27 were
male, and 56 were femalg; 48 of these individualshad previoudy
performed CPR on more than 10 occasions.

The sample size was determined by the number of eligible
participants available during the data collection period, using
a convenience sampling approach. While no formal power
analysis was conducted, the sample size of 83 participants was
considered sufficient to meet the study’s objectives. Notably,
previous studies in similar domains have used smaller sample
sizes—Gruenerbl et al [44] included 50 participants, and Lu et
al [45] conducted their study with just 8 participants. In addition,
some participantsin our study performed CPR twice, resulting
in 124 distinct datasets, further enhancing the dataset’ srichness
and utility for training and evaluation.
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Data Cleaning and Preparation for Model Training

Overview

This study used data from 2 sources—an A pple Watch app and
exported data from a mannequin. Each source's data were
recorded in separate files, but a unique identifier linked them
for consistency throughout the data cleaning and preprocessing
stages. Figure 2 illustrates the process of preparing the raw data
for model training and the collected samplefiles.

The mannequin’s data, exported as a comprehensive list of
compressions during each session, served as the gold standard
due to the sensors’ precise compression depth, rate, and recoil
measurements. Meanwhile, the Apple Watch provided
time-stamped accelerometer data across the x-, y-, and z-axes,
formatted as comma-separated values (CSVs). Both datasets
included detailed compression information, enabling analysis
of 2-minute CPR sessions.
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Figure2. (A) The flow diagram illustrates the process for preparing the data for model training and sample data from XML and CSV files. (B) XML
data file sample, showing data for 1 compression collected from the Laerdal mannequin. (C) CSV file sample, showing data collected from the Apple

smartwatch. CSV: comma-separated value.
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For each sessioninvolving apair of mannequin and smartwatch
datasets, a 2-minute duration was recorded. The data were
segmented into smaller portions to facilitate prompt feedback,
potentially enabling real-time feedback. This segmentation
process involved two critical steps: (1) aligning the datasets
from the mannequin and the smartwatch to ensure their data
corresponded accurately for analysis, detailed in subsection
“Data Matching (Process 1)”; and (2) executing the chunking
algorithm, detailed in the subsection “Data Chunking (Process
2)

Whilereal time user feedback was beyond this project’s scope,
the data were examined to assess future applicability for this
purpose. A 5-second analysiswindow was sel ected for potential
feedback, where high-quality CPR—defined by approximately
10 compressions within this period—was used as the feedback
standard. After receiving feedback, users would need time to
comprehend and adjust their technique before the next feedback
prompt.

Data Matching (Process 1)

The 2 data sources have different structures: the mannequin
(XML file) records a sequence of compression events and their
properties, while the smartwatch logs (CSV file) contain
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time-series accelerometer data. Because of this difference,
synchronization cannot be based on time stamps. Instead, the
datasets are aligned based on compression events, as the focus
ison analyzing compression depth and frequency. Thefirst step
is to identify when compressions occurred using the
accelerometer data, as explained further in this study. Once
these events are detected, they can be matched with the
corresponding compression depth and other propertiesfrom the
XML file.

A chest compression pattern typically indicates a peak in
acceleration when the CPR performer compresses the chest, as
shown in Figure 3. Due to sensor noise and the performer’'s
hand movement vibrations, various peaks can appear in the
data; however, only afew of these should be considered valid
compressions. The XML file from the mannequin specifiesthe
number of compressions performed, which serves as the gold
standard for creating an algorithm to identify compression peaks
inthe CSV file.

After analyzing the accelerometer data from the compressions,
3variableswereidentified to help determineif apeak isavalid
compression peak. First, the acceleration difference: the change
in acceleration at the compression peak should be significant.
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Second, the window size isthe time frame within which a peak
can occur; for example, 2 compressions cannot happen within
5 microseconds. Third, the minimum acceleration peak helps
filter out recoil peaks or peaks caused by vibrations or sensor
noise. These values may vary from one compression to another,
even if performed by the same person, due to factors such as
user fatigue, incomplete recoil, changesin compression rate, or
varying compression force.

To handle variability, algorithm 1 (Figure 4) was designed to
match the “peaksFoundINCSV” with the peaks recorded in the

Rao et al

XML file. The authors used SciPy’s find_peaks function to
detect pesks in the CSV file based on 3 key
variables—accel eration difference, window size, and minimum
acceleration peak. Sincethese values varied acrossfiles, ascript
iterated through a range of values—acceleration difference
(0.01-2), window size (1-40), and minimum accel eration peak
(-1to 2)—with step sizesof 0.2, 3.9, and 0.3, respectively, until
the detected peaks matched those in the XML file. To verify
accuracy, random manual checkswere performed by generating
graphs, similar to Figure 3, to ensure the peaks were correctly
identified and aligned.

Figure 3. Process 1: The diagram illustrates a representative output showing the mapping of compressionsin the XML data (mannequin data) with the

compressions detected in the accelerometer data (smartwatch data).
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Figure 4. Pseudocode to generate matches between compressions in mannequin and accelerometer data files (algorithm 1).

Input: AccelerometerFile (C); MannequinFile (X); AccelerationDifferenceRange (AD), MinimumAccelerationPeakRange

(MAD), WindowSizeRange (WS)

Output: Dictionary (CompressionMatching) mapping compression peaks in accelerometer data to corresponding

Records in mannequin data

1: PeaksInMannequin = findCompressionsCountinMannequin(X)

2:forad e AD do
3: formad € MAD do

[> Collecting Mannequin data

[> Looping through range of AD values

[> Looping through range of MAD values

[> Looping through range of WS values

[> Finding peaks in CSV data using findpeak function
> If compression match, then return data

[> update the variables to find peaks again

4 forws e WS do

5 peaksFoundInCSV = findPeaks(C, ad, mad, ws)
6: if peaksFoundInCSV = PeaksIinMannequin then
7 CompressionMatching = getMatchingData(X, C, peaksFoundInCSV)
8 return CompressionMatching

9 else

10: updateRangeVariables(AD, MAD, WS)

11: end if

12:  end for

13: endfor

14: end for
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Data Chunking (Process 2)

A 5-second interval was chosen as the optimal chunking
duration, with the rationale for this selection explained in the
previous section. Subsequently, the aligned datasets underwent
segmentation into chunks for detailed analysis. Figure 5
illustrates the segmentation process applied to a representative
dataset. Following the alignment of accelerometer datawith the
mannequin’s compression peaks, the accelerometer readings
were divided into 300-point segments (indicated by a green
box). Each segmented block (denoted by a green box) wasthen

Rao et al

documented as a single record within the dataset used for
training the proposed model, formatted in CSV. These records
encompassed acceleration data for a 5-second interval
(equivalent to 300 data points a a 60 Hz sampling rate),
alongside the average compression depth and the total number
of compressions recorded within that timeframe. For instances
where the dataset was less than 5 seconds in length, the
accel eration datawas padded with zeros at the end to standardize
it to a 5-second duration. The zero padding was performed on
124 records. The datasets prepared through this method were
subsequently used to train the neural network model.

Figure5. Process 2: Illustration of combining accelerometer and mannequin data to create the dataset for training the neural network model.
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Model to Predict CPR Perfor mance

The aim of this study was to evaluate CPR performance by
analyzing accelerometer data collected from smartwatches,
which inherently included various forms of sensor noise, such
as vibrations due to hand movements and accelerations not
associated with chest compressions. The direct elimination of
this noise was deemed impractical; therefore, the decision was
made to use a supervised learning approach, specifically aneura
network model, to tackle thisintricate challenge.

During model testing, the training data was randomly selected
from 5-second chunks (2701 records), which could result in
partial data from a participant appearing in both the training
and test sets. However, since these chunks were not directly
comparable, as determined during the review, the datawere not
split by participants. Although neural networkstypically assume
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that dataareindependent and identically distributed, thisstudy’s
approach does not violate this assumption. Figure 6 illustrates
the CPR performance of 3 participants over 100 seconds,
summarized in 5-second intervals. Each chunk is treated as an
independent data point, with no relationship to the previous or
next chunk. The objective of thisresearchisto randomly select
a 5-second chunk and predict compression depth and count
based on the accelerometer data, independent of past or future
data. Since the model istrained to make predictions on isolated
chunks rather than sequential patterns, the independent and
identically distributed assumption holds, and data splitting by
participants is not necessary. Figure 6 shows that compression
depth declined over time and compression counts varied
significantly. However, since the model does not rely on
temporal dependencies, each chunk remains independent,
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justifying the decision not to split data by participants for
training and testing.

The dataset was randomly split into 80% (2161/2701) training
and 20% (540/2701) validation test sets. Each record consisted
of 300 accelerometer data points, corresponding to a duration
of 5 seconds at a 60 Hz sampling rate. The abjective of the
model isto predict both the number of compressions and their
average depth during thisinterval.

The development of the model used the TensorFlow library
within the Python programming environment [52]. To optimize
the model’s performance, a combination of grid search and
Hyperband techniqueswas used. In each experiment, grid search
was used to explore a broad range of hyperparameters,
identifying configurations that performed well or poorly. In
addition, the Hyperband technique was applied to refine the
search by excluding poorly performing hyperparameter sets,
thereby narrowing the search space. This process was repeated
iteratively, with grid search expanding the search range in each

Rao et al

new experiment, followed by Hyperband reducing it to eliminate
ineffective configurations. The key hyperparameters adjusted
included the number of hidden layers, layer sizes, number of
epochs, batch sizes, and dropout rates. The objective was to
determine the most effective combination of hyperparameters
that would allow themodel to accurately interpret accel erometer
data, despite sensor noise, and reliably assess CPR quality based
on smartwatch data.

To evaluate the normality of the data and assess the correlation
between actual and predicted values, 2 statistical tests were
conducted. First, the Shapiro-Wilk test was performed on the
expected depth and expected compression count to determine
if the data followed a normal distribution. The results showed
P valuesof 2.69x10 3% and 2.80x10 * , respectively, indicating
that both datasets deviated significantly from normality. Given
this, Spearman rank correlation was chosen to measure the
relationship between expected versus predicted depth and
compression counts since it does not assume normality.

Figure 6. Variation in compression depth and compression rate among three participants over 100 seconds of CPR performance.
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Ethical Consider ations

The research ethics evaluation for this study was reviewed and
approved by the TBRHSC Research Ethics Board (2022519),
with all procedures conducted in accordance with the ethical
standards of the responsible institutional committee and the
principles outlined in the World Medical Association
Declaration of Helsinki. Written informed consent was obtained
from all participants before their inclusion in the study. To
maintain privacy and confidentiality, all data collected were
deidentified at the point of collection, with each participant
assigned a unique identifier; a separate, secure document
mapping participant identities to theseidentifierswas maintained
independently and was not linked to the research data
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Participants were compensated with aUS $5 gift card for their
participation.

Results

Table 1 contains the demographic details of participants
involved in the data collection process. A total of 83 individuals
contributed, resulting in 124 mannequin-smartwatch datasets,
with 41 participants completing 2 rounds of CPR. The sample
included 56 femal es and 27 mal es, spanning various age groups,
with the largest group being younger than 30 years old.
Participants also varied in their previous CPR experience,
ranging from no previousattemptsto over 30, offering adiverse
dataset in terms of skill level and background.
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Table 1. Demographic details of participants in the data collection process.

Rao et al

Description

Number of participants, n

Number of manneguin-smartwatch datasets

Number of participants

Participants performing 2 rounds of CPR?
Sex
Female
Mae
Agegroups (y)
<30
30-39
40-49
>50
Previous CPR attempts

124
83
41

56
27

42
27

12
23
10
14
24

8CPR: cardiopulmonary resuscitation.

A series of experiments were systematically conducted,
exploring various hyperparameters and datasets, until no notable
improvements in outcomes were observed. This investigative
process entailed 12 different experiments to find the optimal
set of hyperparameters. Within each trial, dataon the variations
in hyperparameters were documented, noting the discrepancies
between anticipated and actual compression depthsand counts.
Given that the variance between expected and observed results
could manifest in negative figures, potentially skewing average
calculations, absolute values were used for a more accurate
determination of the average and median. These analytical steps
infformed adjustments in hyperparameters for ensuing
experiments aimed at enhancing performance.

Throughout this extensive testing phase, a total of 1226
iterations were conducted, each exploring different
hyperparameter settings. The specific settings and the best
outcomes from each experiment are presented in Table 2, while
detailed information on each experiment is provided in
Multimedia Appendix 2. Summarizing the testing, the most

https://mhealth.jmir.org/2025/1/e57469

effective model across all iterations was characterized by the
following hyperparameters: hidden layers configured as (2000,
1000, 250, 100, 50), a batch size of 2000 epochs, and adropout
rate of 10% after every 2 layers. Predictions from this model
demonstrated an average absol ute [ossin compression depth of
3.8 (SD 0.16) mm and in compression count of 0.8 (SD 0.05)
counts, with a median absolute loss for compression depth at
2.59 (IQR 0.24) mm and for compression count at 0.03 counts.
Throughout the course of the experiments, 27 models were
identified as capable of predicting an average absolute
compression depth below 4.0 mm.

The Spearman correlation coefficients were 0.80 and 0.78,
respectively, with P values of 1e-3, indicating a strong and
statistically significant positive correlation between actual and
predicted values for both compression depth and compression
count. Thesefindings suggest that the model effectively predicts
compression depth and count, even though the underlying data
distribution is not normal.
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Table 2. Summarizing hyperparameters for each experiment and the best results achieved.

Experiment  Epochs Batch Layer sizes Number of  Connection dropout Best result (compression
size layers depth, count)
1 10 3,5,7, 10,35, 60, 85, 100, 400, 700, 3 10% after every 2 layers +4.8 mm, 1.2 counts
9,11 1000, 1200
2 100, 500 6, 12, 10, 35, 60, 85, 100, 400, 700, 3,4 10% after every 2 layers +4.0 mm, 0.9 counts
18 1000, 1200
3 500, 750 18,24 5,40, 100, 500, 900, 1300 4,6 10% after every 2 layers +4.8 mm, 1.2 counts
4 500, 750 18,24 5,40, 100, 500, 900, 1300 4,6 10% after every 2 layers +3.9 mm, 0.9 counts
5 500, 750 18,24 5,10, 60, 100, 400, 700, 1000 4 10% after every 2 layers +3.9 mm, 0.8 counts
6 500, 750 6,24 5, 10, 50, 100, 500, 1000, 4000 4,5 10% after every 2 layers +6.2 mm, 1.2 counts
7 1000 3 5, 10, 50, 100, 500, 1000, 4000 5 10% after every 2 layers +4.0 mm, 0.9 counts
8 1000 12 5, 10, 50, 100, 500, 1000, 4000 5 No dropouts +3.9 mm, 0.9 counts
9 1000 3,12 5, 10, 50, 100, 500, 1000, 4000 3 No dropouts +4.1 mm, 0.9 counts
10 100, 500, 3,9 5, 10, 25, 50, 75, 100, 250, 500, 3 10% after every 2 layers +4.1 mm, 0.9 counts
1000 1000, 1250, 1500, 1750, 2000,
2250, 2500, 2750, 3000, 3250,
3500, 3750, 4000
11 100, 1000 3,128 5,10, 25,50, 75, 100, 250,500, 5 10% after every 2 layers +3.9 mm, 0.8 counts
1000, 1250, 1500, 1750, 2000,
2250, 2500, 2750, 3000, 3250,
3500, 3750, 4000
12 1000, 2000 256, 5, 10, 25, 50, 75, 100, 250, 500, 5 10% after every 2 layers +3.8 mm, 0.8 counts
1024 1000, 1250, 1500, 1750, 2000,
2250, 2500, 2750, 3000, 3250,
3500, 3750, 4000
: : more extensive and redlistic dataset than those previous
Discussion : : b y
reported in the literature [40,44,45,53-55].
Overview

This study introduces aneural network model capable of using
accelerometer data from a smartwatch to guide users in
delivering high-quality CPR. To facilitate this, apps for both
Apple Watch and iPhone were developed to gather
accelerometer data during CPR. This research compiled data
from 83 participants using Apple Watches to perform CPR on
amannequin, resulting in atotal of 27,844 chest compressions.
A total of 1226 experimentswere conducted to eval uate different
hyperparameter settings. The most effective model used hidden
layers (2000,1000,250,100,50), abatch size of 2000, and a10%
dropout after every 2 layers. This model achieved an average
absolute loss of 3.8 mm in compression depth and 0.8 in
compression count, with median losses of 2.59 mm and 0.03
counts, respectively. In total, 27 models achieved an average
absolute compression depth loss of less than 4.0 mm.

Principal Results

Considering mannequin data as the benchmark, the neural
network was trained with the accel erometer datato emulate the
mannequin’'s feedback. After undergoing 1226 iterations of
model refinement, the optimal model emerged, capable of
estimating compression depth with an average discrepancy of
3.8 mm and compression count with an average discrepancy of
0.8 counts across 5-second intervals. This investigation
underscores the potentia of a neural network model to surpass
existing models in predicting CPR quality, underpinned by a

https://mhealth.jmir.org/2025/1/e57469

Comparison With Previous Work

Numerous studies have highlighted significant enhancements
in CPR quality when performers receive rea-time feedback
through intelligent technol ogies[40,53,56]. Gruenerbl et al [44]
proposed a smartwatch app capable of measuring CPR
parameters and offering visual feedback. This app analyzes
accelerometer data to evaluate compression quality, providing
user feedback to achieve high-quality compressions. Lu et al
[45] aso proposed a smartwatch app alongside an algorithm
for evaluating compression metrics. However, these proposed
solutions are developed on limited datasets and do not provide
sufficient detailsto reproduce or enhance the system. Dedicated
devices, such as the Laerdal CPRMeter2, which can be placed
on the chest of a mannequin or patient, are available for
purchase. These devices are equipped with accelerometers and
pressure sensors to accurately assess CPR performance and
provide real-time feedback [26]. However, these devices are
expensive and must be carried by the user at al times, as
emergencies can occur at any moment.

Limitations

This study demonstrates that the accelerometer data from the
smartwatch can be used to provide real-time feedback to the
CPR performer and can help increase the survival chances of
the patient. However, there are afew limitations worth noting.
First, the developed model focuses on measuring compression
depth and count but does not account for compression recoil.
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Compression recoil plays an important role in performing
high-quality CPR, asit allowsthe patient’s chest to fully expand.
Thisfull expansion enablesmore air to enter the patient’s body.
Compression recoil can also be measured using acceleration
data from the smartwatch and compared with sensor data from
themannequin, similar to how compression events are measured.
In future research, the authors plan to include thisfactor aswell.

Second, the Apple Watch Series 7 was the exclusive device
used to collect data during this study. However, sensors in
smartwatches vary between brands, models, and versions, each
having its own set of white noise that may impact the results.
Therefore, it is necessary to investigate how other deviceswith
different sensors perform with the presented model and whether
the model needs to be tuned for each device type. In future
studies, the authors plan to use an Android device to cover a
broader spectrum of sensors.

Third, during data collection, it was observed that the sensor
data frequency fluctuated between 48-60 Hz, athough the
collection rate was set to 60 Hz. This fluctuation could be due
to several reasons: slower processing on the device, thedevice's
inability to write data at that frequency to thefile, or thedevice's
processing speed being unableto read the datafrom the sensors
at this speed. Therefore, it isimportant to investigate how the
model’s performance would be affected if the data frequency
were lowered.

Fourth, whileworking with the Apple Watch, the authors found
alimitation that restricts its use during emergency events. The
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Apple Watch only alows an app to run in the background for
30 seconds before it is suspended, after which the app can only
execute its tasks intermittently. This restriction hinders the use
of the smartwatch for providing real-time feedback during
emergencies.

Finaly, in data segmentation, the acceleration data were
chunked based on a fixed number of data points (300,
representing 5 seconds of data at 60 Hz). This chunking may
occur during a compression event, potentially splitting the
compression event into 2 parts, which the algorithm may not
recognize, resulting in missed compressions. In future research,
the authors plan to address this problem by introducing an
advanced agorithm that can recognize the completion of a
compression event and then segment the data accordingly to
avoid splitting compression data.

Conclusions

This study presents a neural network model designed to gauge
the rate and depth of CPR compressions accurately. The model
has undergone training on a large dataset, ensuring a robust
foundation for its predictive capabilities. Its accuracy is
remarkably close to the measurements obtained from a CPR
mannequin, serving as a benchmark for comparison. Notably,
thismodel demonstrates superior performance when compared
with other models discussed within the existing literature,
establishing it as a significant advancement in the field of
medical emergency training and response analysis.
Implementation of this model in real-world scenarios could
significantly improve SCA survival rates.
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