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Abstract
Background: The increasing prevalence of sedentary lifestyles has prompted the development of innovative public health
interventions, such as smartphone apps that deliver personalized exercise programs. The widespread availability of mobile
technologies (eg, smartphone apps and wearable activity trackers) provides a cost-effective, scalable way to remotely deliver
personalized exercise programs to users. Using machine learning (ML), specifically reinforcement learning (RL), may enhance
user engagement and effectiveness of these programs by tailoring them to individual preferences and needs.
Objective: The primary aim was to investigate the impact of the Samsung-developed i80 BPM app, implementing ML for
exercise prescription, on user satisfaction and exercise intensity among the general population. The secondary objective was to
assess the effectiveness of ML-generated exercise programs for remote prescription of exercise to members of the public.
Methods: Participants were randomized to complete 3 exercise sessions per week for 12 weeks using the i80 BPM mobile
app, crossing over weekly between intervention and control conditions. The intervention condition involved individualizing
exercise sessions using RL, based on user preferences such as exercise difficulty, selection, and intensity, whereas under the
control condition, exercise sessions were not individualized. Exercise intensity (measured by the 10-item Borg scale) and user
satisfaction (measured by the 8-item version of the Physical Activity Enjoyment Scale) were recorded after the session.
Results: In total, 62 participants (27 male and 42 female participants; mean age 43, SD 13 years) completed 559 exercise
sessions over 12 weeks (9 sessions per participant). Generalized estimating equations showed that participants were more
likely to exercise at a higher intensity (intervention: mean intensity 5.82, 95% CI 5.59‐6.05 and control: mean intensity 5.19,
95% CI 4.97‐5.41) and report higher satisfaction (RL: mean satisfaction 4, 95% CI 3.9-4.1 and baseline: mean satisfaction
3.73, 95% CI 3.6-3.8) in the RL model condition.
Conclusions: The findings suggest that RL can effectively increase both the intensity with which people exercise and their
enjoyment of the sessions, highlighting the potential of ML to enhance remote exercise interventions. This study underscores
the benefits of personalized exercise prescriptions in increasing adherence and satisfaction, which are crucial for the long-term
effectiveness of fitness programs. Further research is warranted to explore the long-term impacts and potential scalability of
RL-enhanced exercise apps in diverse populations. This study contributes to the understanding of digital health interventions
in exercise science, suggesting that personalized, app-based exercise prescriptions may be more effective than traditional,
nonpersonalized methods. The integration of RL into exercise apps could significantly impact public health, particularly in
enhancing engagement and reducing the global burden of physical inactivity.
Trial Registration: ClinicalTrials.gov NCT06653049; https://clinicaltrials.gov/study/NCT06653049
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Introduction
Every year, hundreds of randomized controlled trials
evaluating the effects of exercise in diverse population groups
are published. This research has demonstrated the medicinal
capacities of exercise for numerous chronic diseases [1].
Consequently, exercise is considered an essential compo-
nent in the management plans of many health care interven-
tions [1-3]. Regular exercise has also been shown to have
wide-ranging health benefits for nonpathological groups; for
instance, there is evidence to suggest that a sedentary lifestyle
may be an even stronger predictor of mortality than smok-
ing, hypertension, and diabetes [4]. National and international
campaigns, advertisements, and public health guidelines have
been developed to increase public awareness of the benefits
of exercise [5,6]. Despite this, inactivity (and the increased
risk of morbidity and mortality associated with it) remains
a significant public health concern [7,8]. This raises the
question: if people know that regular physical activity and
exercise are good for them, why are so many inactive?

Even in randomized controlled trials, low levels of
adherence to exercise sometimes belie the treatment effect
to such an extent that results in comparison to a nonexercising
control group are statistically insignificant [9,10]. Adherence
to exercise, which is defined as the degree to which the target
intensity and volume are achieved [11,12], is likely to be
worse among the general population, who are not enthusiastic
volunteers in a research study and who are being closely
supervised by a research team [13].

Many theories and models have been proposed to explain
why adherence to exercise is suboptimal [14,15]. A recent
umbrella review identified a number of key factors for
improving adherence to exercise [16]. Among the 14 factors
that were identified, individualizing the exercise program,
making sure that it integrates easily into participants’
daily living schedules, continually monitoring and providing
feedback on progress (and adapting the exercise program
accordingly), ensuring that users have an active role in
goal setting, and using technology to deliver the exercise
intervention were deemed to be important in improving
adherence [16]. Patient education was also considered crucial
to increase self-efficacy, enhancing the knowledge about what
they can do and what they can change to improve their overall
health [17-19].

Mobile technologies (eg, smartphone apps and weara-
ble activity trackers) are a cost-effective, scalable way of
delivering exercise programs to users that incorporate these
factors. Over 60% of adults worldwide own a smartphone,
with worldwide penetration rates highest in the United States
(where >80% of the population uses a smartphone) [20].
In addition to being able to deliver interventions through
wireless internet and messaging connectivity, smartphones
have in-built tools like global positioning systems, inertial

measurement units, and cameras that can objectively measure
several exercise parameters [21-23]. Smartphones also have
powerful computation and communication capabilities that
enable the use of machine learning (ML) and artificial
intelligence to individualize each user’s exercise program.

Reinforcement learning (RL) represents a compelling
method within ML for tailoring and adapting exercise
programs to individual users. In RL, a decision-making
agent performs actions that lead to preferred states within
its environment. Each action transitions the environment to
a new state, following which the agent receives feedback—
either positive or negative reinforcement. This feedback helps
to refine the agent’s “policy,” which is essentially a strategy
that maps states to actions aimed at maximizing cumulative
rewards over time.

For instance, consider the use of RL within a smartphone
app designed for exercise prescription. Here, the agent could
consider variables such as user satisfaction or perceived
exertion (ie, the session’s intensity) as states. The agent’s
actions could involve adjusting various exercise parameters,
such as the number of sets, repetitions, or rest periods in
a training session, or altering the types of recommended
exercises. The reward function would assess the degree of
user satisfaction or exertion, aiming to minimize discrepan-
cies and optimize user experience.

RL is particularly well-suited to the sequential decision-
making required in exercise prescription. It operates in a
cycle where the agent proposes an exercise session, the
user completes it and provides feedback, and the agent uses
this information to tailor future sessions. Although several
frameworks exist for automating exercise prescription based
on user demographics, fitness levels, engagement behaviors,
and preferences [24-27], comprehensive studies evaluating
the effectiveness of fully computerized, app-based exercise
prescription remain limited [28-31]. This gap underscores the
need for further research to validate and optimize RL apps in
this field.

Therefore, the aim of this study was to test a smart-
phone app that generates adaptive exercise regimes, incor-
porating RL to personalize the composition of exercises
within sessions based on user satisfaction. We compared user
satisfaction between sessions generated by the RL system
to a control condition that administered a generic exercise
to the user, irrespective of their preferences. The primary
outcome for this aim was users’ satisfaction with exercise,
which was defined by an abbreviated 8-item version of the
Physical Activity Enjoyment Scale (PACES-8) [32,33].

Our primary hypotheses were that users would report
higher satisfaction and demonstrate greater adherence to
exercise programs generated using RL compared with
sessions that are generated randomly or using predefined
(ie, nonpersonalized) templates. Our secondary hypothesis
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was that users would demonstrate higher levels of exertion,
measured using Borg’s rate of perceived exertion (RPE)
scale, during sessions generated with an RL approach.

Methods
Study Design
The protocol for this study was developed using the SPIRIT
(Standard Protocol Items: Recommendations for Interven-
tional Trials) checklist [34] The design was a 12-week,
assessor-blinded, randomized crossover trial, with the primary
end point being user satisfaction after each exercise ses-
sion. However, unlike a typical crossover trial, participants
transitioned “back and forth” between experimental condi-
tions. Specifically, each participant alternated between the
intervention and control conditions at the end of each

1-week cycle. The order in which participants completed each
condition (RL condition and control condition) was altered on
a weekly basis; each participant was administered condition-
generated exercise sessions for 1 week. Each of these 1-week
cycles was comprised of 3 workout sessions of approxi-
mately 20 minutes in duration, containing >30 exercises (each
exercise lasted <30 seconds). The only difference between
the workout sessions within each condition was the specific
exercises that were recommended (and the order in which
they were completed); all other parameters of exercise were
held consistent. After a 1-week cycle had elapsed, each
cluster of participants completing the protocol under each
of the 2 conditions crossed over to the opposing condition,
with each crossover marking the start of a new 1-week
cycle, regardless of whether participants actually completed
the sessions within that cluster. This design is illustrated in
Figure 1.

Figure 1. Design of the trial.

Ethical Considerations
The University College Dublin Human Research Ethics
Committee approved this study (LS-21‐34-Tragos-Lawlor).
Written informed consent was obtained, and health screening
was conducted for all participants before they enrolled in the
trial. The trial was not prospectively registered. Recruitment
was conducted between July 6, 2022, and August 29, 2022,
and the trial was completed on November 16, 2022. During
data collection, each participant was given a participant ID
number when they registered with the app. The data were
stored using these ID numbers. The key to the code that

matched participants’ full name to their ID number was
saved in an electronic password-protected file, which was
stored on an encrypted drive. The authorship team had sole
access rights to these key codes and ID numbers during
the trial. Data acquired via the smartphone app were stored
on a password-protected University College Dublin server.
After data collection, data were anonymized by permanently
deleting the file with the participants’ identification key.
Participants were not compensated for their participation.
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Population
Participants were recruited from Dublin, Ireland, and its
environs via word of mouth and social media. Male and
female participants aged 18 to 65 years were recruited. To
be eligible for inclusion, participants were required to be
healthy, recreationally active adults. This was defined as
having engaged in aerobic activity for a total of 80 minutes at
moderate intensity, less than or equal to twice per week. Prior
to randomization, participants were screened for eligibility
by the “exercise preparticipation health screening question-
naire for exercise professionals.” Exclusion criteria included
an inability to exercise due to physical disability or motor
impairment, having a severe cognitive impairment, or an
inability to read and write in English.
Blinding
Participants were blinded to their allocation throughout the
course of the trial. The researcher conducting data analysis
was also blinded to knowledge of the intervention.
Procedure
Upon expressing interest, potential participants received
detailed information about the trial along with a health
screening questionnaire. After completing the health
screening, participants attended an information session via
Zoom (Zoom Video Communications), where they were
shown how to use the app and its various functions and
also instructed on downloading it to their mobile devices. At
this session, informed consent was obtained. Each participant
was issued a Samsung Galaxy Fit 2 smartwatch (Samsung
Electronics Co, Ltd) to use during the exercise sessions for
recording heart rate data. Several studies have demonstrated
the accuracy of the Samsung Gear Fit for heart rate measure-
ment during a variety of activity types, making it a suitable
choice for this study [35-37]. Participants were allowed to
keep the fitness tracker after the trial concluded. Immediately
following randomization, baseline data collection was carried
out through the app.
Interventions
Participants were asked to complete 3 exercise sessions
weekly over 12 weeks using the i80 BPM smartphone app
developed by Samsung Electronics Co, Ltd. This app offers
video-guided exercise programs and includes a library of 161
exercises. Using RL, i80 BPM customizes and adapts exercise
sessions to suit the user’s preferences and abilities. The
duration of these sessions, ranging from 10 to 30 minutes,
was selected by the user. Users could create personalized
session plans varying from 1 to 12 weeks and choose between
aerobic and muscle-strengthening exercises, targeting specific
muscle groups. The RL model selected exercises for each
session based on these preferences, ensuring a diverse range
of possible sessions.

Aside from the RL model’s app, all other parameters
remained constant across both the intervention and con-
trol conditions. These included the exercises available, the
app’s interface, and options for session duration and focus
(aerobic vs muscle strengthening). The key difference was

the individualization of exercise sessions using the RL
model in the intervention condition, whereas the control
condition used generic, nonpersonalized sessions. Further
details on the RL model are discussed elsewhere [38],
but in summary, the model used within the i80 BPM app
aimed to optimize user satisfaction by personalizing the
exercise sequence based on user feedback and evolving
preferences. The app’s RL framework used a decision-mak-
ing agent within an environment shaped by user interactions
and fitness profiles. The model was trained to maximize
expected rewards, which incorporated metrics of performance
and user feedback. In this framework, “actions” referred
to the selection of exercises from the app’s database. The
“state” included information such as the user’s fitness
level and exercise preferences along with session specifics
like previously recommended exercises and user feedback.
The “reward function” balanced various elements including
exercise diversity, suitability to the user’s fitness level, and
feedback after each session to ensure that the recommenda-
tions met the user’s goals and responses to past workout
sessions. The RL model used a neural network to map states
to action probabilities, optimizing the sequence of recommen-
ded exercises to maximize cumulative rewards—reflecting
both user satisfaction and session effectiveness [38].

RL Intervention
The RL intervention used the app’s full functionality,
meaning that exercise sessions were tailored to the user by
the RL model, as outlined earlier.

Baseline Control Condition
The control condition used the same i80 BPM app as
described earlier; however, the RL model was not applied.
Instead, generic exercise sessions were provided for the user,
irrespective of their preferences.

Crossover Design
As crossover design was used in this trial, participants
transitioned between the intervention and control conditions.
At the end of each 1-week cycle, participants transitioned
to the opposing condition regardless of how many ses-
sions they had completed. Therefore, each participant could
complete exercise sessions that were adapted by the RL
model (intervention) as well as sessions that were not adapted
(control). This design was chosen to maximize the amount
of data captured for each condition in anticipation of a
high number of dropouts or waning adherence as the trial
progressed.
Outcome Measures
Our primary outcome, user satisfaction, was determined after
each session and was collected via the smartphone app.
Satisfaction was measured using an abbreviated PACES-8
[32,33].

Our secondary outcome was perceived exertion, meas-
ured using the Borg scale, which was administered via the
smartphone app at the end of each session; participants were
cued to “rate your perceived exertion on a scale from 2 to
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10, where 2 means ‘really easy’ and 10 means ‘maximal
exertion.’” Additionally, heart rate data were collected using
the Galaxy Fit 2 smartwatch provided to each participant [37].
This device uses photoplethysmography to measure heart rate
continuously during the exercise sessions. The heart rate data

captured by the smartwatch were automatically relayed to the
i80 BPM app, which was used to record and analyze these
measurements as part of the session data. See Table 1 for all
outcomes and questionnaires.

Table 1. Outcome measures.
Baseline Weekly During each session After each session

Satisfaction
Physical Activity Enjoyment Scale-8 ✓
Rating of perceived exertion ✓
Heart rate ✓
Exercise skipped ✓

Behavioral engagement
Exercise altered ✓
Total time spent on the app ✓
Number of sessions completed ✓

User profiling
Demographics (eg, age and sex) ✓
International Physical Activity Questionnaire ✓

Public Involvement
During an initial feasibility trial, members of the public
worked with us to evaluate the sessions generated by the RL
system and the mobile app user interface and were asked to
assess the burden and time commitment of the study as part of
a user-centered design approach [19]. During this feasibil-
ity study, participants also completed a web-based survey
to establish their current activity levels, their experience
with different health and fitness smartphone apps, how they
currently exercise, and their self-efficacy. Participants were
then asked to use the app over an 8-week period (between
June and October 2021) and were asked to provide feedback
on their experience. Analysis of participants’ feedback and
the app use logs was undertaken by the project team, and the
app was further iterated based on this feedback. The version
of the app that was used in this study (which took place
between June and October 2022) integrated all participants’
feedback from this initial feasibility trial.
Power Calculations and Sample Size
A sample size of minimum 40 participants was estimated
based on the following factors: the sample size recruited as
part of the initial feasibility study (we previously recruited 36
participants over an 8-week trial period), an estimated mean
difference of 8 on the PACES-8 scale based on previous work
for 80% power, and the rule of thumb of at least 10 events for
variable (or measures of user satisfaction and behavioral and
physiological engagement) [39]. Controlling for 15% dropout,
we aimed to recruit a total of 42 participants.
Data Management and Statistical
Analysis

Overview
All collected data were anonymized before analysis, with
each participant assigned a unique identification code that

was used in place of personal identifiers. Data were stored
on secure, encrypted servers accessible only to authorized
personnel involved in the study. All electronic communica-
tions and data transmissions involving participant information
were encrypted. Participant consent forms and other sensitive
documents were stored separately from the study data, in
locked cabinets within secure facilities.
Baseline Characteristics
Descriptive statistics were used to summarize user demo-
graphics and scores on the questionnaires.

Primary and Secondary Hypotheses
The primary outcome measure, user satisfaction, was assessed
using the PACES-8 questionnaire, while the secondary
outcome, perceived exertion, was measured using the Borg
scale. Both outcomes were evaluated at the session level,
meaning each exercise session contributed to the analysis
rather than summarizing data at the participant level.

To account for the repeated measures design and the
correlation of observations within participants, generalized
estimating equations (GEEs) were used to assess differences
between the RL and control conditions for both primary and
secondary outcomes. The dependent variables in the models
were PACES satisfaction scores and Borg perceived exertion
scores. The independent variables included condition (RL
vs control) and trial week (treated as a continuous variable
to account for time effects). Covariates adjusted for in the
models included age, gender, and baseline physical activity
level (categorized as low, moderate, or high). User ID was
included as a subject effect to account for within-subject
correlation. An independent working correlation matrix was
specified for the GEE models, with an identity link function
used for both models. Normal distribution was assumed for
the outcomes. Model fit was assessed using the quasi-likeli-
hood under independence model criterion and the corrected
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quasi-likelihood under independence model criterion, with
lower values indicating better model fit. The main effects of
condition and trial week were estimated, and their signifi-
cance was assessed using Wald chi-square tests. All statistical
analyses were performed using SPSS Statistics software
(version 29; IBM Corp).

Results
In total, 69 participants were initially recruited for the study
(27 male and 42 female participants); however, only 62 (24
male and 38 female participants) completed at least 1 exercise
session. The mean age of participants was 42.8 (SD 13.3)
years, with an average height of 1.7 (SD 2.4) m, body mass of
75.7 (SD 21.1) kg, and BMI of 25.8 (SD 7.8) kg/m2. These 62
participants completed 559 exercise sessions between them
(9 sessions per participant). A total of 16% (n=11) adhered
to at least 50% (n=18) of the sessions they were assigned to
complete (ie, 18 of 36), while 34% (n=23) adhered to at least
25% (n=9) of sessions. In total, 268 sessions were completed
that were comprised of exercises generated by the RL model,
while 291 sessions were completed that were comprised of
exercises generated by the baseline model.

The PACES-8 GEE estimated a main effect for con-
dition. An analysis of the parameter estimates revealed
that participants were more satisfied with exercise sessions
generated by the RL model (RL condition: mean satisfaction

4, 95% CI 3.9-4.1 and baseline condition: mean satisfaction
3.73, 95% CI 3.6-3.8). The main effect for condition was
significant (P=.02), with a parameter estimate of B=−0.261
(SE 0.109), indicating a modest but meaningful difference in
satisfaction scores. The 95% CI for this estimate ranged from
−0.475 to −0.047.

The intensity GEE estimated significant main effects for
condition (P<.01) and trial week (P=.048). The intensity
was significantly higher in sessions generated by the RL
model compared to the baseline model (RL condition: mean
intensity 5.82, 95% CI 5.59‐6.05 and baseline condition:
mean intensity 5.19, 95% CI 4.97‐5.41). Analysis of the
parameter estimates indicated that participants exercised at
higher intensities during RL sessions (B=−0.633, SE 0.179;
P<.01).

We conducted an exploratory analysis of the separate
questions from the PACES-8 questionnaire. Specifically,
separate GEEs assessed differences in responses to individual
items on the PACES-8 questionnaire. Significant main effects
for condition were found for items related to pleasure (item
#1), invigoration (item #4), gratification (item #5), exhilara-
tion (item #6), stimulation (item #7), and how refreshing each
session was (item #8; P=.02 for each). Summary statistics for
the primary outcome measures of satisfaction, difficulty, heart
rate, the number of exercises completed, and the duration for
exercise sessions generated by the baseline and RL models
are presented in Table 2.

Table 2. Summary statistics for overall satisfaction and heart rate for the baseline and reinforcement learning (RL) models and the average scores for
the individual PACES-8a items.
Outcome Baseline, mean (95% CI) RL model, mean (95% CI) P value
PACES-8 3.73 (3.6-3.8) 4 (3.9-4.1) .02
Heart rate 106.81 (105-107) 107.24 (106-108) —b

Intensity 5.19 (4.97-5.41) 5.82 (5.59-6.05) <.01
Duration (minutes) 17 (17-18) 20 (20-21) —
PACES-8_pleasurec 3.66 (3.6-3.7) 3.88 (3.8-4.0) .047
PACES-8_fund 3.53 (3.4-3.6) 3.72 (3.6-3.8) .08
PACES-8_pleasante 3.53 (3.4-3.6) 3.71 (3.6-3.8) .05
PACES-8_invigoratingf 3.75 (3.7-3.8) 4.15 (4.1-4.2) <.01
PACES-8_gratifyingg 3.84 (3.7-3.9) 4.17 (4.1-4.3) <.01
PACES-8_exhilaratingh 3.74 (3.6-3.8) 4.04 (3.9-4.1) .02
PACES-8_stimulatingi 3.85 (3.7-3.9) 4.13 (4.0-4.2) .02
PACES-8_refreshingj 3.84 (3.7-3.9) 4.06 (4.0-4.1) .02

aPACES-8: 8-item version of the Physical Activity Enjoyment Scale.
bNot available.
cPACES-8_pleasure: item related to the pleasure derived from the exercise.
dPACES-8_fun: item related to the fun experienced during the exercise session.
ePACES-8_pleasant: item related to how pleasant the exercise session felt.
fPACES-8_invigorating: item related to the invigorating nature of the exercise session.
gPACES-8_gratifying: item related to the gratification from the exercise session.
hPACES-8_exhilarating: item related to the exhilaration felt during the exercise session.
iPACES-8_stimulating: item related to how stimulating the exercise session was.
jPACES-8_refreshing: item related to how refreshing the exercise session felt.
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Discussion
Principal Findings
The aim of this randomized crossover trial was to investi-
gate whether exercise sessions generated using RL were
associated with better user satisfaction compared with a
control condition. In this trial, exercise recommendations
were delivered via the same smartphone app over the course
of a 12-week “back and forth” crossover period, in which
participants were subjected to each experimental condition in
a 1-week cycle, each comprising 3 exercise sessions of 20
minutes in duration. Whether participants actually comple-
ted the sessions within a cycle did not affect their weekly
crossover to an alternative condition. The primary outcome
of user satisfaction was determined using the PACES-8
questionnaire, which has been previously used in diverse
population groups [32,33,40,41] and as part of smartphone
app testing protocols [42]. The secondary outcome, perceived
exertion, was determined after each exercise session using the
Borg scale.

During the trial, 62 (62% female) participants comple-
ted 559 exercise sessions (approximately 9 sessions per
participant). Our results showed that participants were more
satisfied with exercise sessions generated by the RL model
(RL condition: mean satisfaction 4, 95% CI 3.9-4.1 and
baseline condition: mean satisfaction 3.73, 95% CI 3.6-3.8).
By incorporating trial week as a covariate in our analysis,
we were able to show that participants were generally more
satisfied with exercise sessions generated by the RL model
compared to the control condition. Additionally, participants
reported exercising at a higher intensity during sessions
generated using the RL model (RL condition: mean inten-
sity 5.82, 95% CI 5.59‐6.05 and baseline condition: mean
intensity 5.19, 95% CI 4.97‐5.41).
Comparison to Prior Work
Our findings have import practical implications. Despite
the well-known benefits of regular physical activity, many
individuals struggle to stick to an exercise routine over the
long term [43,44]. This is often due to a lack of motivation or
a mismatch between the exercise program and the individu-
al’s personal preferences and abilities [45-47]. RL-generated
sessions, however, make it possible to personalize exercise
programs, tailoring them to an individual’s unique prefer-
ences, abilities, and goals. This could potentially improve
motivation and adherence to the exercise routine, ultimately
leading to better health outcomes.

In particular, the ubiquity of smartphones means that
app-based exercise prescription, enabled by RL algorithms,
has the potential to greatly improve public health by
increasing motivation and adherence to exercise routines. RL
is a type of artificial intelligence that involves training a
model to make decisions that maximize a reward. This is
typically done through a process of trial and error, where
the model receives a reward for taking certain actions and
a penalty for others. Over time, the model learns to make
the decisions that are most likely to result in the maximum

reward. The process of RL is similar to how animals and
humans learn to perform tasks, and it has been used to
solve a wide range of problems in fields such as robotics,
gaming, and finance [48,49]. The key advantage of RL is its
ability to learn from experience and adapt to new situations
without needing to be explicitly programmed. This makes it
an effective approach for solving complex, dynamic problems
such as how to devise an exercise program.

The use of ML methods, including RL, to generate is a
burgeoning research area. Previous research has demonstra-
ted the effectiveness of using ML for tailoring interventions
in these apps. For instance, Aguilera et al [50] observed
a significant improvement in step count among individuals
with diabetes and depression over the short term when ML
was used to tailor SMS text messages within a self-manage-
ment app. Additionally, RL has been successfully applied
to enhance adherence to exercise in patients with diabetes
through the distribution of individualized service messages
that encourage physical activity [51]. The application of ML
has even shown promise in the general population, with
personalized daily step goals leading to increased physical
activity compared to static step goals [52].

Our trial is the first known study to use an RL model
specifically for personalizing exercise sessions and assessing
its impact on participant satisfaction. While prior studies have
used RL to promote exercise adherence through personal-
ized messaging, the outcomes were mostly centered around
physical activity measures such as step count [52,53].
Although our study and these previous studies differ in design
and primary outcomes, a common thread can be observed
regarding the potential of RL to encourage physical activity
and exercise, despite the challenges inherent in smartphone
app delivery. Furthermore, there is a relative scarcity of
evidence concerning the use of RL specifically for exercise,
as opposed to physical activity. RL has found utility in wider
health care contexts, such as individualizing the difficulty
level in a virtual reality rehabilitation game [54], aiding
in weight loss maintenance [55], and even selecting and
delivering drugs [56-58].

These studies, alongside the findings from our trial,
reinforce the emerging potential of RL in health-related
behaviors and outcomes. The results of this crossover trial
contribute to our understanding of the potential for adaptive
exercise interventions to improve adherence to an exercise
intervention. Our hypothesis that users would be more
satisfied with sessions generated by the RL system was
confirmed. The effect size, calculated as the mean difference
normalized by the SD (Cohen d), was approximately 0.24.
This represents a small to moderate effect size, suggesting
that while the RL model led to higher satisfaction, the
magnitude of this difference, though statistically significant,
might not be substantial in practical terms. These findings
underscore the importance of considering both statistical and
practical significance in evaluating the efficacy of health
interventions. The practical implications suggest that while
the RL model enhances satisfaction, efforts to refine the
model to maximize its impact on user engagement and
satisfaction should continue. Future research should focus on
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identifying and integrating additional predictors of satisfac-
tion into the RL model, potentially increasing the effect size
and thereby the practical impact of the technology. This
research could also inform the development of RL systems
for exercise prescription in patient populations (such as those
with cardiovascular or metabolic diseases). This could lead
to better health outcomes and reduced health care costs, as
regular physical activity and exercise are known to prevent a
wide range of chronic diseases [59]. Additionally, app-based
exercise prescription has the potential to be more accessible
and convenient than traditional forms of exercise prescrip-
tion, making it easier for individuals to incorporate physical
activity into their daily lives. On this basis, RL in smartphone
app–based exercise prescription has the potential to greatly
benefit public health; this study is the first step in setting the
empirical foundation for follow-on research to investigate and
establish the potential of RL-based exercise prescription in
larger and more diverse populations.

Typically, in exercise science research investigating the
use of mobile technologies to deliver the exercise interven-
tion, participants are randomized to either an intervention
group or a control group [60,61]. These groups are subse-
quently monitored for a predefined period as they use the
app and are measured at the end of the intervention period
to determine the health benefits of the exercise intervention,
for example, based on a decrease in body weight or BMI,
an increase in fat-free mass, or alterations in certain blood
biomarkers [62,63]. However, the health benefits of exercise
in diverse population groups are now well established. This
is one of the primary reasons why we adopted a session-
focused, “back and forth” crossover design (which was more
robust to reducing levels of participation over the course
of the trial), with satisfaction as our primary outcome. By
cycling between each intervention condition on a weekly
basis, participants acted as their own controls and ensured
that we have a representative dataset for both the RL and
control conditions. Rather than user-associated outcomes such
as body weight at the start and conclusion of the intervention
period being the primary experimental end point then, we
focused on session-level outcomes like satisfaction and RPE.
Specifically, each exercise session was characterized by the
aggregated statistics of satisfaction and RPE for our entire
cohort. This allowed us to build a profile for each session
and evaluate how profiles are altered for each experimental
condition under which the sessions are completed (and also to
provide continuous input for the RL system).

However, despite its novelty and the strength of its
methodological design, this study is not without limitations.
Ours was a relatively small sample of homogenous partici-
pants; therefore, our findings may not be generalizable to
other populations. It is also important to note the potential
for selection bias in our recruitment strategy. Participants
were recruited through word of mouth and social media,

which might not provide a fully representative sample of the
target population. This approach could attract individuals who
are more technologically savvy, potentially more health-con-
scious, or with specific demographic characteristics that are
overrepresented in social media networks. Consequently, our
findings might not be generalizable to all segments of the
population. While the crossover study design was statistically
efficient, it meant that we were unable to compare 2 separate
groups in the long term for our primary and secondary
outcomes. It was also not possible to follow a double-blind
design, as researchers needed to be aware of participants’
group allocation throughout the intervention period to manage
follow-up and ensure that participants did not have any issues
using the app; the researchers and technical personnel had to
monitor our server for troubleshooting throughout the trial.
Finally, we observed that participants completed an average
of 9 sessions over the 12-week trial period, equating to
less than 1 session per week. This level of engagement is
notably lower than the intended 3 sessions per week per
participant outlined in the study protocol. Several factors
could contribute to this lower-than-expected adherence rate,
including potential barriers faced by participants such as
time constraints, lack of motivation, or the possibility that
the app did not fully engage users as anticipated. Understand-
ing and addressing these factors are crucial for the future
development of app-based exercise prescriptions, as enhanced
user engagement is key to achieving the health benefits
of regular physical activity. The insights gained could also
inform the broader field of digital health interventions aimed
at improving lifestyle behaviors.
Conclusions
This randomized crossover trial evaluated the utility of a type
of artificial intelligence called RL for devising an app-based
system for exercise prescription. Our findings demonstra-
ted that exercise sessions generated using RL were associ-
ated with higher satisfaction. Additionally, our participants
completed sessions in the RL condition at a higher intensity
than in the control condition. Taken together, our results
suggest that there is significant scope for using RL algorithms
to train a model to recommend exercises that are tailored
to an individual’s unique goals, preferences, and abilities.
Further research should investigate the potential for exer-
cise prescription using RL to empower the general popula-
tion to be healthier by providing personalized and engaging
exercise programs that are tailored to an individual’s unique
goals, preferences, and abilities. Such an approach may help
individuals take control of their own health and fitness
and provide them with the tools and support they need to
maintain a regular exercise routine. By making exercise more
accessible, engaging, and personalized, RL has the potential
to improve public health by encouraging more individuals to
incorporate physical activity into their daily lives.
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