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Abstract

Background: Parkinson’s disease (PD) is the most prevalent movement disorder of the central nervous system, and affects
more than 6.3 million people in the world. The characteristic motor features include tremor, bradykinesia, rigidity, and impaired
postural stability. Current therapy based on augmentation or replacement of dopamine is designed to improve patients’ motor
performance but often leads to levodopa-induced adverse effects, such as dyskinesia and motor fluctuation. Clinicians must
regularly monitor patients in order to identify these effects and other declines in motor function as soon as possible. Current
clinical assessment for Parkinson’s is subjective and mostly conducted by brief observations made during patient visits. Changes
in patients’ motor function between visits are hard to track and clinicians are not able to make the most informed decisions about
the course of therapy without frequent visits. Frequent clinic visits increase the physical and economic burden on patients and
their families.

Objective: In this project, we sought to design, develop, and evaluate a prototype mobile cloud-based mHealth app, “PD Dr”,
which collects quantitative and objective information about PD and would enable home-based assessment and monitoring of
major PD symptoms.

Methods: We designed and developed a mobile app on the Android platform to collect PD-related motion data using the
smartphone 3D accelerometer and to send the data to a cloud service for storage, data processing, and PD symptoms severity
estimation. To evaluate this system, data from the system were collected from 40 patients with PD and compared with experts’
rating on standardized rating scales.

Results: The evaluation showed that PD Dr could effectively capture important motion features that differentiate PD severity
and identify critical symptoms. For hand resting tremor detection, the sensitivity was .77 and accuracy was .82. For gait difficulty
detection, the sensitivity was .89 and accuracy was .81. In PD severity estimation, the captured motion features also demonstrated
strong correlation with PD severity stage, hand resting tremor severity, and gait difficulty. The system is simple to use, user
friendly, and economically affordable.

Conclusions: The key contribution of this study was building a mobile PD assessment and monitoring system to extend current
PD assessment based in the clinic setting to the home-based environment. The results of this study proved feasibility and a
promising future for utilizing mobile technology in PD management.

(JMIR mHealth uHealth 2015;3(1):e29) doi: 10.2196/mhealth.3956
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that affects more than 1 million US residents and about
3% of the population over the age of 65 in the world [1,2]. PD
can cause significant physical and mental impairment and
decreased quality of life [3]. When PD becomes clinically overt,
tremor, bradykinesia, rigidity, and impaired postural stability
are the four cardinal motor signs [4]. Patients may also suffer
from shuffling of gait, freezing of gait, and dystonia [5]. Current
PD management requires regular assessment and close
monitoring of symptoms in order to adjust medication dosage
and frequency, especially when motor complications of therapy
appear. Assessment is generally conducted using brief
observations by the physician during a patient visit. Assessment
in this clinical setting is subjective and it is difficult to keep
track of decline and improvement of symptoms between clinic
visits [6]. Closer monitoring of PD symptoms has the potential
to permit more informed decisions about therapy. Achieving
closer monitoring with more frequent clinic visits increases the
physical and economic burden for PD patients and their families
[7].

Given the characteristics of Parkinson’s disease and its
challenges on disease management, designing ambulatory tools
for remote monitoring of PD patients has also attracted a lot of
attention recently [8-13]. The eddy-current detector, commercial
portable multichannel recorder, and wearable sensor have been
used to measure hand tremor [14-16]. In a recent study,
Rodriguez-Molinero et al used a portable inertial sensor to detect
motor fluctuations (on-off) in PD patients, and the result showed
very high sensitivity and specificity [17]. In terms of gait, there
are three primary measurements of gait: (1) force-based
measurement, (2) angular rate measurement, and (3)
accelerometer measurement [18]. Several accelerometer-based
measurement systems for ambulatory monitoring of gait-related
symptoms in PD have been reported in freezing of gait detection,
posture and walking speed estimation, and fall risk estimation
[3,19-21]. Salarian et al used body-attached gyroscopes to
estimate gait features and physical activities related to PD.
However, their study did not report any result about how to use
the estimated features to detect and estimate PD severity [22,23].
Patel et al, in Harvard medical school, used wearable
accelerometers to evaluate motor complications on persons with
PD, and attempted to predicate the clinicians’ estimates of
disease symptoms severity [8,24,25]. But their approach needed
patients to attach several sensors at different locations and also
required a separate control module to transmit and store data.
The requirement of these extra settings puts an additional burden
on users and decreases the usability of the system.

With the rapid development of sensor technology, cloud
computing, and ubiquitous access to the Internet from mobile
devices, eHealth and mobile health have spurred the
development of telemedical systems that monitor vital signs
and physiological signals, including electrocardiograms and

electromyography, with several being marketed [8,26-28]. With
the integrated sensors in modern smartphones becoming more
powerful and cheaper, the feasibility and accuracy of using
smartphones to measure various movement-related metrics have
attracted a lot of research interest. Fontecha et al recently
reported using tri-axels accelerometers in smartphones to assess
frailty in elderly people [29]. Liddle et al used the global
positioning system (GPS) sensor in smartphones to evaluate
lifespace of people with PD [30]. Galan-Mercant et al utilized
the accelerometer and gyroscope to measure sit-to-stand posture
transition in elderly persons [31]. Recently, Apple unveiled its
plan to embark on health care by releasing HealthKit APIs in
iOS 8 in June 2014. These provide efficient tools and an
interface for developers to develop apps to access, manage, and
transfer information about health and well-being with a wearable
device. With these technology evolutions, it is feasible and very
promising to extend PD monitoring from intermittent
clinic-based assessment to the home-based environment by
leveraging current mobile device and powerful cloud computing.

In this project, we designed, developed, and evaluated a mobile
cloud-based app, “PD Dr”, for Parkinson’s disease home-based
monitoring and assessment. PD Dr assesses users’ motor
performance by capturing motion data using the embedded 3D
accelerometer of a smartphone, identifying key symptoms, and
estimating symptom severity based on this captured data. In
this paper, we first describe system architecture, design, and
development. We then present the initial test results. We end
by discussing design considerations, potential limitations, and
future directions.

Methods

System Description and Architecture
PD Dr is a mobile cloud app that utilizes the 3D accelerometer
in a smartphone to collect data on hand tremor and walking
motion, and utilize high computing performance and cloud
service storage to analyze disease severity and monitor disease
progression. The system is composed of two parts: a mobile
app on a smartphone for motion data collection and user
interaction, and a cloud service that processes the motion data
and stores results. Patients use the client app to test their own
performance, send the motion data to a cloud service, and
receive evaluation results back from the cloud. Figure 1 displays
the overall system architecture and data flow.

The mobile app on the smartphone captures patients’movement
accelerations while they conduct a motor performance task. The
smartphone is mounted on the back of the hand or ankle of the
patient with a strap, and instructions on screen guide them
through the motor performance task. Data captured by the 3D
accelerometer embedded in the smartphone are temporarily
stored locally on the device. Once a task is finished, captured
motion data and metadata are sent to a cloud service. The cloud
application processes received data through a data pipeline that
estimates disease severity and the estimate is sent back as a
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report to the patient’s smartphone. All motion data and analysis
results are stored in a cloud database that is used for tracking
disease history.

In PD Dr, users’ privacy and data security are assured at three
levels: at the mobile app level, the data transmission level, and
the data storage level. In the mobile app, user log-in is required
in order to perform the test and browse test history. All
application data stored on the local mobile device are encrypted;

the data are deleted from the device after sending to the cloud
server. The mobile app does not store or display any patient
identity information, in accordance with Health Insurance
Portability and Accountability Act (HIPAA) regulations. At the
data transmission level, data are encrypted and transmitted
through secure hypertext transfer protocol (https). At the server
level, data are stored in the database in encrypted format and
only an authorized database administrator has access.

Figure 1. System architecture and data communication flow.

Motor Performance Test Design
PD Dr measures motion in three motor performance tasks: hand
resting tremor, walking, and turning. Selection of these three
tasks was based on previous studies that found a strong
association of the three motor performances with PD severity.
Hand resting tremor is a typical symptom that is found in most

early stage PD patients [32]. A strong association exists between
PD lower body motor disabilities and walking/turning
performance [33]. Table 1 provides a detailed explanation of
the motor tasks. Figure 2 depicts the mount positions of the
smartphone in the hand resting tremor, walking, and turning
tasks.

Table 1. Designed motor performance test on PD Dr app.

Captured data descriptionTest descriptionTest name

Translational acceleration rate at X, Y, and Z directions
and angular acceleration rate at pitch, roll, and yaw
directions.

User attaches the smartphone to the back of the hand and
leaves the hand hanging for 20 seconds.

Hand tremor

Translational acceleration rate at X, Y, and Z directions
and rotation matrix of smartphone with time change.

User attaches the smartphone to the ankle of one leg and
walks 25 feet.

Walking

Angular acceleration rate at pitch, roll, and yaw direc-
tions with time change.

User attaches the smartphone to the pivot leg in turning
360°.

Turning
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Figure 2. Smartphone and motor test application in hand tremor test (A) and walking & turning test (B).

Mobile App: Data Acquisition and Communication
The client mobile app was developed on the Android 4.0
platform. The sampling rate of the accelerometer was set to 100
Hz. Since hand tremor acceleration is lower than 20 Hz [34,35],
and walking and turning acceleration is between 2~5 Hz [36],
100 Hz sampling rate is sufficient to capture PD-related motion
features. Because the device might not have Internet access in
certain conditions, an internal relational database SQLite was
utilized as temporary local data storage to store captured motion
data. To accommodate situations where neither a wireless
network nor mobile phone network is available, acquired motion
data can be temporarily stored in the internal database and then
sent to the server side when a network is available. All data was
marshaled into XML format and then encrypted using Advanced
Encryption Standard (AES) algorithm for transmitting to the
cloud server through the Internet [37].

The mobile app is made up of four function modules, shown in
Figure 3. The first module is user log-in and account

verification. Users must first log in with their credentials to
perform the tests. See Figure 3 (A). The second module, the
motor performance test module, lists the three tests for user
selection. See Figure 3 (B). After the user selects a test, the test
view appears and displays step-by-step instructions on how to
conduct the test. As the user performs the test, captured motion
data are displayed on the smartphone screen in real time; the
data are saved on the smartphone once the test is completed, as
shown in Figure 3 (C). The third module is a communication
module, which integrates with short message service (SMS)
and email. Users can send questions or receive medical
recommendations from the medical care facility server. The
fourth module is the test history management module. It is
composed of a list view and search field. Users can browse test
history chronologically or search a specific test. Once a target
test record is found, the user can click on a test record to review
details, send it to a server, or delete it from the smartphone. See
Figure 3 (D).

Figure 3. Screenshots of PD Dr app: (A) User account log-in, (B) Motor test list, (C) Data collection during test, and (D) Test history and evaluation
result.
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Cloud Service: Data Processing and Decision Making
The cloud service is composed of three components: (1) a data
processing pipeline, (2) disease severity predictive models, and
(3) database storage. The framework of server side components
is depicted in Figure 4. Motion data are first received by the
ingestion module in encrypted XML. For each received test
record, the data ingestion module decrypts and parses out the
raw motion data and associated metadata, which consists of
sampling rate, time duration, date, test type and user ID. The
ingestion module then puts the test record into a message queue
for asynchronized handlers to process. Each asynchronized
handler pulls a message from the message queue, then sends
the data to the database, where it is analyzed through the data
processing pipeline. The main reason to use a message queue
and asynchronized handler to process data is to increase system
scalability and decouple the system components. The data
processing pipeline executes a series signal processing steps
and data analysis steps. The pipeline first filters out noise
through low pass filter and then calibrates acceleration to zero
baseline.This is followed by analytics to extract PD-related
motion features using several signal processing and motion
pattern extraction algorithms that were introduced in previous
studies [38-40]. Tables 2 and 3 provide a detailed description
of extracted motion features for hand resting tremor, walking,
and turning. The extracted motion features are then fed into a
decision support module that uses the information to estimate

disease severity based on Part III of the Unified Parkinson’s
Disease Rating Scale (UPDRS) and disease stage using the
Hoehn&Yahr scores [41]. All of the cloud components,
including the motion ingestion module and data processing
pipeline, were home-developed using Java programming
language and were built on the Spring web framework.

The decision support module was designed to detect critical
movement disability symptoms and to estimate PD severity. In
this prototype, the decision support module could provide
severity estimation of hand resting tremor and gait difficulty,
as well as PD disease stage estimation. We utilized a subset of
data mining techniques to assess whether hand resting tremor
and gait difficulty are characterized by specific patterns and to
estimate disease severity from the hand resting tremor motion
features and gait features respectively. Input features for hand
resting tremor and gait difficulty were extracted motion features,
as described in Tables 2 and 3. The motion features of hand
resting tremor were selected based on previous study results on
characteristics of resting tremor, as well as experts’ opinions
[34,35,42]. Two binary classification models were trained using
Support Vector Machine (SVM), to detect gait difficulty and
hand resting tremor [43,44]. For estimating symptom severity,
we built three regression models to estimate disease stage
(Hoehn&Yahr score from 1-5), hand resting tremor UPDRS
score, and gait difficulty UPDRS score, using the Lasso
regression approach [41,45,46].

Table 2. Extracted hand resting tremor motion features.

DescriptionTremor features

The power of the motion data between 4 and 6 Hz.PF4_6

Fraction of power of motion data between 4 and 6 Hz.%PF4_6

Power ratio of the motion data in 3.5~15 Hz to 0.15~3.5 Hz frequency componentsPR

The total power of motion data from 0~20 HzPF0_20

The peak power value of hand resting tremor motion data.PEAK_POWER

The average acceleration of motion of hand resting tremor.AVG_ACC

Table 3. Extracted gait motion features.

DescriptionGait features

Walking Straight Task

Average gait cycle time.CT (s)

Average stride length.SL (m)

Average walking speed.SP (m/s)

Average acceleration during walking.AVG_ACC (m/s2)

Turning 360 o

The number of steps used to finish turning 360o.NUM_TURN

The speed of turning 360o, calculated by 360o / time.TURN_SP
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Figure 4. Cloud data processing pipeline.

System Evaluation
PD Dr was tested and evaluated by recruiting patients with PD
to use this system. The involvement of PD patients in the project
was approved by the St. Joseph’s Hospital and Medical Center
(SJHMC) Institutional Review Board. Patients who received
UPDRS-based evaluations as part of their regular clinic visits
were invited to participate in this study, except mentally
incompetent individuals and those with conditions that increased
their vulnerability. The study instructions and consent forms
were given to patients and explained by the principal
investigator. If patients agreed to participate in this study, they
signed the consent forms, which were collected by the principal
investigator before testing. Participation was voluntary and
participants could withdraw at any time during the study. We
recruited 40 patients with a diagnosis of PD who had motor
symptoms from among outpatients seen in the Muhammad Ali
Parkinson Center. Hand resting tremor, walking, and turning
motion data were collected through PD Dr. Two movement
disorder experts also evaluated the severity of PD symptoms
and disease stages of these 40 test subjects. Their expert ratings
and evaluation of disease stage were treated as ground truth in

training the prediction models used in decision support module.
Collected motion data were analyzed and validated against the
experts’ evaluation of disease severity.

Results

Test Subject Description
Table 4 shows the general characteristics of the 40 PD patients
in this study. Among these 40 patients, 5 were female and 35
were male. Ages of the participants ranged from 44 to 84 years,
and the average age was 68.5 years old (SD 9.5). Among all
subjects, 16 were in early disease stage (disease duration less
than 6 years), and 24 subjects were in late disease stage (disease
duration more than 6 years). The average Hoehn&Yahr stage
was 2.4 (SD 0.8). There were 6 subjects at stage 1, 13 subjects
at stage 2, 12 subjects at stage 3, and 9 subjects at stage 4. No
subjects at stage 5 were recruited in this study. Among these
40 subjects, 9 subjects had freezing of gait (FoG), 11 subjects
had gait difficulty other than FoG, 19 subjects had postural
instability, and 5 subjects reported having falls on a weekly
basis.
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Table 4. Patients’ general characteristics and UPDRSa scores (N=40).

Median

(Q1-3)

RangeMean (SD)

or number

70 (63-74)44-8468.5 (9.5)Age (years)

6 (4-8)0-196.6 (4.0)Disease duration (years)

2 (2-3)1-42.4 (0.8)Hoehn&Yahr stage

Presence of motor related disabilities (Yes/No)

N/AN/A10/30Bradykinesia

N/AN/A9/31Freezing of gait (FoG)

N/AN/A11/29Gait difficulty

N/AN/A19/21Postural stability problem

N/AN/A5/35Falls

aUPDRS: Unified Parkinson’s Disease Rating Scale

Hand Resting Tremor
Collected hand resting tremor motion data were analyzed and
compared between subjects with different disease severities.
Figure 5 shows hand resting tremor motion data for three
subjects with UPDRS tremor score (UPDRS III Item 20) ranging
from 1~3, which maps to mild, moderate, and severe. Power
spectrum density (PSD) plots are shown in the left column, and
corresponding accelerations are shown in the right column. The
patient with mild hand tremor, Figure 5 (A), shows average

acceleration of hand motion of 0.47 m/s2. The PSD plot shows
power spectrum mainly dominated around 5 Hz and the peak

power was 16.8 (m/s2)2/Hz. For the patient with intermediate

hand tremor, Figure 5 (B), the peak acceleration was at 6.3 m/s2,

and peak PSD was at 39.01 (m/s2)2/Hz. The patient at

intermediate severity shows intermittent hand tremor, with

average acceleration at 1.7 m/s2 when hand tremor appears.
Figure 5 (C) shows the motion data of a patient with severe
hand resting tremor. It can be observed that continuous large

acceleration of tremor movement appeared at 3~5 m/s2, with

peak PSD at 71.2 (m/s2)2/Hz.

From the above comparison, the results show that acceleration
of hand tremor from PD Dr can demonstrate distinct quantitative
characteristics according to change of severity. Moreover, our
results are congruent with the observation rest tremor in PD
predominates in 4~6 Hz [34]. The acceleration and PSD analyses
demonstrate that hand tremor motion data collected from PD
Dr can effectively capture motion features to characterize
tremor, and provide a quantitative measurement for hand resting
tremor.
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Figure 5. Acceleration waveform and power spectrum density (PSD) plot of hand resting tremor of different severity: (A) Mild hand resting tremor,
(B) Moderate hand resting tremor, and (C) Severe hand resting tremor.

Gait Difficulty
Over the course of PD, motor impairment in the lower body
can substantially impair walking, balance, and postural stability,
putting patients at risk for falling. PD Dr captures lower body
movement from measurements of 3D acceleration of the ankle
during walking and turning, as shown in Figure 6. Sample gait
motion data from four test subjects with UPDRS gait score
(UPDRS III Item 29) at 0, 1, 2, and 3 (according to ascending
of severity) respectively, are shown in Figures 7-10. Figure 7
shows the gait acceleration waveform from a subject with
UPDRS gait score of 0, with no gait difficulty observed. The
gait profile exhibits the repetitive pattern of gait cycles: each
gait cycle is composed of a swing phase and a stance phrase.

Peak acceleration in each gait cycle generally remains consistent.

Positive peak acceleration is up to 8 m/s2, and the negative peak

acceleration is up to 12 m/s2. As severity of gait impairment
increases, gait patterns in each cycle become more volatile and
peak accelerations decrease substantially. In Figure 8, from a
subject with UPDRS gait score of 1, repeating gait cycles can
still be observed and the acceleration in each gait cycle is still
stable. However, the peak acceleration decreases substantially

to less than 5 m/s2. When UPDRS gait difficulty increases to
2, shown in Figure 9, regular gait patterns disappear. The
duration of gait cycles shows large variation, and the swing and
stance phases become obscure. Accelerations of ankle movement
also show large fluctuations. Figure 10 shows the data from a
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test subject who was diagnosed with FoG. It can be seen that
the gait cycle is discontinuous, and there is a long gap from 3.6
s to 5.3 s, and from 6.2 s to 8.2 s; during those two periods, the
test subject was unable to move.

To further evaluate the performance of PD Dr in capturing key
motion characteristics of PD symptoms, gait cycle time (CT),
stride length (SL), walking speed (SP), and average acceleration
(ACC) of all 40 PD patients were extracted. These four features
were compared between patients without gait difficulty (UPDRS
gait difficulty score <2) and patients with gait difficulty (UPDRS
gait difficulty score ≥2). The statistical significance of
differences between these two groups was tested based on the
t test. Table 5 shows the result of this analysis. Average gait
cycle time (CT) of patients without gait difficulty is 1.1 s (SD
0.32), smaller than the average gait cycle time 1.22 s (SD 0.49)
of patients having gait difficulty. The stride length and walking

speed of patients without gait difficulty are significantly larger
than patients with gait difficulty. The average acceleration of

walking is 5.2 m/s2 (SD 1.1) for patients without gait difficulty,

and 3.6 m/s2 (SD 1.7) for patients with gait difficulty. There
were statistically significant differences between the two groups
for SL (P=.035), SP (P=.026), and AVG_ACC (P=.038). In
turning, the number of steps to complete turning 360°
(NUM_TURN) and turning speed (TURN_SP) were compared
between the two groups. Patients without gait difficulty needed
3.1 (SD 0.9) steps for turning a full circle, and their average
turning speed was 79.1 degree/s (SD 8.49). For the group of
patients with gait difficulty, 5.4 steps (SD 1.1) were needed and
turning speed was 53.7 degree/s (SD 6.98). The differences of
these two turning features are also statistically significant
(P=.042 for NUM_TURN and P=.039 for TURN_SP).

Figure 6. The mount position of the smartphone in walking and turning task.
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Table 5. Extracted motion features from walking and turning tests (results are divided into two groups, UPDRSagait score <2 and UPDRS gait score
≥2.)

P valueUPDRS gait score ≥2UPDRS gait score <2Gait features

Mean (SD)

Walking straight

.0761.22 (0.49)1.1 (0.32)CT(s)b

.035h1.07 (0.29)1.26 (0.17)SL(m)c

.026h0.87 (0.28)1.15 (0.20)SP(m/s)d

.038h3.6 (1.7)5.2 (1.1)AVG_ACC(m/s2)e

Turning 360 o

.042h5.4 (1.1)3.1 (0.9)NUM_TURNf

.039h53.7 (6.98)79.1 (8.49)TURN_SP(degree/s)g

aUPDRS: Unified Parkinson’s Disease Rating Scale.
bCT: gait cycle time.
cSL: stride length.
dSP: walking speed.
eACC: average acceleration.
fNUM_TURN: the number of step used to finish turning 360o.
gTURN_SP: the speed of turning 360o, calculated by 360o / time.
hSignificance (α=.05).

Figure 7. Acceleration in walking, Unified Parkinson’s Disease Rating Scale (UPDRS) gait score = 0.
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Figure 8. Acceleration in walking, Unified Parkinson’s Disease Rating Scale (UPDRS) gait score = 1.

Figure 9. Acceleration in walking, Unified Parkinson’s Disease Rating Scale (UPDRS) gait score = 2.
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Figure 10. Acceleration in walking, Unified Parkinson’s Disease Rating Scale (UPDRS) gait score = 3.

PD Symptoms Detection and Severity Estimation
The two classification models for detecting gait difficulty and
hand resting tremor were trained and validated against the
experts’ evaluation result by using 5-fold cross-validation (CV)
[47]. We randomly split data from the 40 patients into five equal
size subsets. A single subset was retained as the validation data
for testing the model, and the remaining four subsets were used
as training data. The cross-validation process was then repeated
five times with each of the five subsets used exactly once as the
validation data. The validation results demonstrate good
sensitivity and specificity. For hand resting tremor detection,
sensitivity was .77 and specificity was .82. In gait difficulty
detection, sensitivity was .89 and specificity was .81. The
regression models also showed that captured motion features
have strong correlation with PD disease stage, hand resting
tremor severity, and gait difficulty severity. The correlation
coefficients for PD stage are r=.81, r=.74 for hand resting
tremor, and r=.79 for gait difficulty.

Discussion

Principal Results
Today’s mobile devices empower consumers more than ever
to measure, collect, access, and manage health data [48]. As
acquisition and processing of large scale data become feasible
in the cloud, they have the potential to vastly improve decision
making and provide important insights about personal health
and public health. In this study, we designed a mobile cloud
solution, PD Dr, for Parkinson’s disease home-based monitoring.
This paper describes the system architecture, basic functional
components, and data flow of the mobile cloud app in remote
health monitoring and chronic disease management for patients
with PD. This system could be extended to assessment of other
movement disorders.

Although home-based monitoring increases health care access
and saves patients’ time and money, it also places stringent
constraints on system: cost, size, unobtrusiveness, and ease of
use are all factors impacting usefulness of the system. System
testing by recruited patients showed PD Dr is simple and easy
to use. Users can finish all tests within 5 minutes. Another
advantage of PD Dr is that it can provide a more objective and
quantitative measurement for PD assessment than subjective
evaluation by physicians in PD assessment. Results of system
evaluation tests demonstrated that PD Dr can effectively capture
important motion features from accelerating signals to
differentiating tremor and severity of gait impairment. The
acceleration amplitude and power spectrum density of hand
tremor give more quantitative and objective measurement than
subjective rating. Motion features extracted from walking and
turning demonstrated intuitive description of the subject’s
walking ability, and comparison of walking and turning motion
features show significant difference between gait impairment.
The predictive models constructed in this study to estimate
disease severity demonstrated acceptable accuracy and
promising future. The ability to monitor secular changes in
tremor amplitude and various components of the gait cycle can
provide a powerful tool for the patient and clinician to monitor
progression of disease and need to optimize treatment and use
services like physical therapy to address incipient problems in
gait and postural stability. Further, the modular design of the
cloud-based data processing and decision support units allow
the ability to process accelerometer-based data acquired using
a multitude of wearable devices, which are being introduced in
the consumer market at a rapid pace.

Despite many studies and research on ambulatory assessment
systems for Parkinson’s disease, most of the previous approaches
were based on using a separate sensor network and control
module. In Patel’s recent study based on wearable sensors, the
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user needs to wear eight accelerometers on the body, and
requires a mobile phone to receive and send data [8]. In
Keijsers’s study on ambulatory motor assessment in PD, they
used six sensors at different positions of body to collect data
[13]. In the above systems, the sensed data needs to be
transmitted to a control device and wearing multiple sensors on
the body is not easy or convenient for PD patients. The detached
sensor and control device also increase the system complexity
and reduce the system reliability. Users need to set up and
configure the system properly, which also decreases the usability
[44,49]. In PD Dr, no complicated set-up or configuration is
needed. Users simply use one smartphone and one strap to finish
all tests, with no environment and space limitations. No
peripheral equipment, such as sensors, cables, or power supply
is needed, which greatly improves the usability of PD Dr.
Another advantage of PD Dr is it provides an integrated service
from data capturing to symptom detection and severity
assessment. More importantly, PD Dr serves as an ambulatory
PD evaluation platform; it is easy to add new tests to extend
function and measure more PD characteristics by taking
advantage of the smartphone sensor and various data input
channels. For example, the touch screen can be used for
measuring finger tapping speed, and video recording ability can
capture the facial expression to evaluate loss of facial
expression.

Limitations
Since this paper mainly focuses on system design, components,
and architecture, we did not present details about data
processing, motion feature extraction, and decision-making
models for severity estimation or symptoms identification. We
plan to discuss details about the data pipeline, motion feature
extraction, and results of estimating disease severity using
machining learning to support decision-making in a subsequent
paper.

As a pilot study, this prototype system first focused on tremor
and gait assessment in PD. Other than these two key PD
characteristics, bradykinesia, motor fluctuation, and dyskinesia
are also substantial symptoms that have important clinical
meaning and also impair patients’ quality of life. Those three
PD characteristics are also measurable by using accelerometers.
In the next step, we will extend PD Dr to include more tests to
cover broader dimensions of Parkinson’s disease.

Unlike the wearable sensor network, PD Dr is not an ideal
platform to provide continuous monitoring over a long period
of time, but more focuses on intermittent assessment of key
motor issues of PD. This intermittent assessment approach, to
some extent, has lower temporal resolution compared to
wearable sensor networks, which users can wear for a longer
time. Therefore, for some specific PD symptoms, like on-off
phenomenon, PD Dr has poor ability to catch the change of
motor ability during a certain period of time.

In this initial evaluation, due to funding and time limitations,
we recruited only 40 PD patients as test subjects. The small
number of test subjects, to some extent, limits training a more
accurate decision model, as well as validating the performance
of the entire system. In the next step, with more available testing
data from recruited subjects, we plan to refine the algorithm of
cloud server side data analytics to improve the accuracy of key
PD symptoms detection and severity estimation.

Another limitation of our evaluation is the absence of feedback
from PD physicians. This limitation will be taken into account
in future usability tests. The system is still under development.
Some additional functionality, including firing alerts when
symptoms become worse, providing distributed access to
clinicians for reviewing and accessing data repository, will be
implemented in the future work.
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PSD: power spectrum density
SL: stride length
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TURN_SP: the speed of turning 360o, calculated by 360o / time
UPDRS: Unified Parkinson’s Disease Rating Scale
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